Содержание

Калькулятор онлайн - Перевод конечной и бесконечной периодической десятичной дроби в обыкновенную

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

Обыкновенные дроби. Деление с остатком

Если нам нужно разделить 497 на 4, то при делении мы увидим, что 497 не делится на 4 нацело, т.е. остаётся остаток от деления. В таких случаях говорят, что выполнено деление с остатком, и решение записывают в таком виде:
497 : 4 = 124 (1 остаток).

Компоненты деления в левой части равенства называют так же, как при делении без остатка: 497 — делимое, 4 — делитель. Результат деления при делении с остатком называют неполным частным. В нашем случае это число 124. И, наконец, последний компонент, которого нет в обычном делении, — остаток. В тех случаях, когда остатка нет, говорят, что одно число разделилось на другое без остатка, или нацело. Считают, что при таком делении остаток равен нулю. В нашем случае остаток равен 1.

Остаток всегда меньше делителя.

Проверку при делении можно сделать умножением. Если, например, имеется равенство 64 : 32 = 2, то проверку можно сделать так: 64 = 32 * 2.

Часто в случаях, когда выполняется деление с остатком, удобно использовать равенство
а = b * n + r ,
где а — делимое, b — делитель, n — неполное частное, r — остаток.

Частное от деления натуральных чисел можно записать в виде дроби.

Числитель дроби — это делимое, а знаменатель — делитель.

Поскольку числитель дроби — это делимое, а знаменатель — делитель, считают, что черта дроби означает действие деление. Иногда бывает удобно записывать деление в виде дроби, не используя знак «:».

Частное от деления натуральных чисел m и n можно записать в виде дроби \( \frac{m}{n} \), где числитель m — делимое, а знаменатель п — делитель:
\( m:n = \frac{m}{n} \)

Верны следующие правила:

Чтобы получить дробь \( \frac{m}{n} \), надо единицу разделить на n равных частей (долей) и взять m таких частей.

Чтобы получить дробь \( \frac{m}{n} \), надо число m разделить на число n.

Чтобы найти часть от целого, надо число, соответствующее целому, разделить на знаменатель и результат умножить на числитель дроби, которая выражает эту часть.

Чтобы найти целое по его части, надо число, соответствующее этой части, разделить на числитель и результат умножить на знаменатель дроби, которая выражает эту часть.

Если и числитель, и знаменатель дроби умножить на одно и то же число (кроме нуля), величина дроби не изменится:
\( \large \frac{a}{b} = \frac{a \cdot n}{b \cdot n} \)

Если и числитель, и знаменатель дроби разделить на одно и то же число (кроме нуля), величина дроби не изменится:
\( \large \frac{a}{b} = \frac{a : m}{b : m} \)
Это свойство называют основным свойством дроби.

Два последних преобразования называют сокращением дроби.

Если дроби нужно представить в виде дробей с одним и тем же знаменателем, то такое действие называют приведением дробей к общему знаменателю.

Правильные и неправильные дроби. Смешанные числа

Вы уже знаете, что дробь можно получить, если разделить целое на равные части и взять несколько таких частей. Например, дробь \( \frac{3}{4} \) означает три четвёртых доли единицы. Во многих задачах предыдущего параграфа обыкновенные дроби использовались для обозначения части целого. Здравый смысл подсказывает, что часть всегда должна быть меньше целого, но как тогда быть с такими дробями, как, например, \( \frac{5}{5} \) или \( \frac{8}{5} \)? Ясно, что это уже не часть единицы. Наверное, поэтому такие дроби, у которых числитель больше знаменателя или равен ему, называют

неправильными дробями. Остальные дроби, т. е. дроби, у которых числитель меньше знаменателя, называют правильными дробями.

Как вы знаете, любую обыкновенную дробь, и правильную, и неправильную, можно рассматривать как результат деления числителя на знаменатель. Поэтому в математике, в отличие от обычного языка, термин «неправильная дробь» означает не то, что мы что-то сделали неправильно, а только то, что у этой дроби числитель больше знаменателя или равен ему.

Если число состоит из целой части и дроби, то такие дроби называются смешанными

.

Например:
\( 5:3 = 1\frac{2}{3} \) : 1 — целая часть, а \( \frac{2}{3} \) — дробная часть.

Если числитель дроби \( \frac{a}{b} \) делится на натуральное число n, то, чтобы разделить эту дробь на n, надо её числитель разделить на это число:
\( \large \frac{a}{b} : n = \frac{a:n}{b} \)

Если числитель дроби \( \frac{a}{b} \) не делится на натуральное число n, то, чтобы разделить эту дробь на n, надо её знаменатель умножить на это число:
\( \large \frac{a}{b} : n = \frac{a}{bn} \)

Заметим, что второе правило справедливо и в том случае, когда числитель делится на n. Поэтому мы можем его применять тогда, когда трудно с первого взгляда определить, делится числитель дроби на n или нет.

Действия с дробями. Сложение дробей.

С дробными числами, как и с натуральными числами, можно выполнять арифметические действия. Рассмотрим сначала сложение дробей. Легко сложить дроби с одинаковыми знаменателями. Найдем, например, сумму \( \frac{2}{7} \) и \( \frac{3}{7} \). Легко понять, что \( \frac{2}{7} + \frac{2}{7} = \frac{5}{7} \)

Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить прежним.

Используя буквы, правило сложения дробей с одинаковыми знаменателями можно записать так:
\( \large \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c} \)

Если требуется сложить дроби с разными знаменателями, то их предварительно следует привести к общему знаменателю. Например:
\( \large \frac{2}{3}+\frac{4}{5} = \frac{2\cdot 5}{3\cdot 5}+\frac{4\cdot 3}{5\cdot 3} = \frac{10}{15}+\frac{12}{15} = \frac{10+12}{15} = \frac{22}{15} \)

Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства сложения.

Сложение смешанных дробей

Такие записи, как \( 2\frac{2}{3} \), называют смешанными дробями. При этом число 2 называют целой частью смешанной дроби, а число \( \frac{2}{3} \) — ее дробной частью. Запись \( 2\frac{2}{3} \) читают так: «две и две трети».

При делении числа 8 на число 3 можно получить два ответа: \( \frac{8}{3} \) и \( 2\frac{2}{3} \). Они выражают одно и то же дробное число, т.е \( \frac{8}{3} = 2 \frac{2}{3} \)

Таким образом, неправильная дробь \( \frac{8}{3} \) представлена в виде смешанной дроби \( 2\frac{2}{3} \). В таких случаях говорят, что из неправильной дроби выделили целую часть.

Вычитание дробей (дробных чисел)

Вычитание дробных чисел, как и натуральных, определяется на основе действия сложения: вычесть из одного числа другое — это значит найти такое число, которое при сложении со вторым дает первое. Например:
\( \frac{8}{9}-\frac{1}{9} = \frac{7}{9} \) так как \( \frac{7}{9}+\frac{1}{9} = \frac{8}{9} \)

Правило вычитания дробей с одинаковыми знаменателями похоже на правило сложения таких дробей:
чтобы найти разность дробей с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель оставить прежним.

С помощью букв это правило записывается так:
\( \large \frac{a}{c}-\frac{b}{c} = \frac{a-b}{c} \)

Умножение дробей

Чтобы умножить дробь на дробь, нужно перемножить их числители и знаменатели и первое произведение записать числителем, а второе — знаменателем.

С помощью букв правило умножения дробей можно записать так:

\( \large \frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} \)

Пользуясь сформулированным правилом, молено умножать дробь на натуральное число, на смешанную дробь, а также перемножать смешанные дроби. Для этого нужно натуральное число записать в виде дроби со знаменателем 1, смешанную дробь — в виде неправильной дроби.

Результат умножения надо упрощать (если это возможно), сокращая дробь и выделяя целую часть неправильной дроби.

Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства умножения, а также распределительное свойство умножения относительно сложения.

Деление дробей

Возьмем дробь \( \frac{2}{3} \) и «перевернем» ее, поменяв местами числитель и знаменатель. Получим дробь \( \frac{3}{2} \). Эту дробь называют обратной дроби \( \frac{2}{3} \).

Если мы теперь «перевернем» дробь \( \frac{3}{2} \), то получим исходную дробь \( \frac{2}{3} \). Поэтому такие дроби, как \( \frac{2}{3} \) и \( \frac{3}{2} \) называют взаимно обратными.

Взаимно обратными являются, например, дроби \( \frac{6}{5} \) и \( \frac{5}{6} \), \( \frac{7}{18} \) и \( \frac{18}{7} \).

С помощью букв взаимно обратные дроби можно записать так: \( \frac{a}{b} \) и \( \frac{b}{a} \)

Понятно, что произведение взаимно обратных дробей равно 1. Например: \( \frac{2}{3} \cdot \frac{3}{2} =1 \)

Используя взаимно обратные дроби, можно деление дробей свести к умножению.

Правило деления дроби на дробь:
чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю.

Используя буквы, правило деления дробей можно записать так:
\( \large \frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} \)

Если делимое или делитель является натуральным числом или смешанной дробью, то, для того чтобы воспользоваться правилом деления дробей, его надо предварительно представить в виде неправильной дроби.

Перевести обыкновенную дробь в десятичную. Калькулятор онлайн.

Как перевести обыкновенную дробь в десятичную

Десятичные дроби стали использовать для более удобной записи обыкновенных дробей. Чтобы записать десятичную дробь необходимо целую и дробную части отделить друг от друга запятой. Если дробь не содержит целой части, необходимо поставить ноль перед запятой. Если дробь имеет знаменатель вида 10, 100, 1000 и т.д. и количество цифр в числителе меньше, чем в знаменателе, то для перевода такой дроби в обыкновенную необходимо посчитать число цифр в числителе и число нулей в знаменателе. Например, у дроби

(ноль целых 12 тысячных) 2 цифры в числителе и 3 ноля в знаменателе. 3 – 2 = 1, следовательно, необходимо записать один ноль после запятой

Приведем еще пример, дробь

У этой дроби в числителе 1 цифра, 3 ноля в знаменателе. 3 – 1 = 2, следовательно, необходимо записать два ноля после запятой

И последний пример, дробь

У данной дроби в числителе 2 цифры и в знаменателе 2 ноля. 2 – 2 = 0, следовательно, не нужно добавлять ноль после запятой

В случае если знаменатель дроби является числом отличным от чисел типа 10, 100, 1000 и т.д., то тогда необходимо такую дробь привести к знаменателю вида 10, 100, 1000 и т.д. Первым делом необходимо привести дробь к несократимому виду. Затем разложить знаменатель дроби на простые множители. Если в разложении будет хотя бы один множитель отличный от 2 или 5, то такую дробь можно представить только в виде бесконечной десятичной дроби. Если в разложении дроби все множители являются числами 2 или 5, тогда необходимо сделать так, чтобы число двоек и пятерок было одинаковым. Для этого нужно до множить числитель и знаменатель дроби на недостающее количество двоек или пятерок. Например,
1∙5∙5 =
2∙2∙2∙5∙5∙5

Приведем еще один пример
6 101 =
2∙2∙2∙5∙5
6 101∙5
=
2∙2∙2∙5∙5∙5

Приведем пример бесконечной десятичной дроби

При переводе данной дроби в десятичную получается бесконечная десятичная дробь
Более подробно о десятичных дробях можно прочитать в данной статье. Вам могут также быть полезны следующие сервисыДробиКалькулятор интервальных повторенийУчим дроби наглядноКалькулятор сокращения дробей Калькулятор преобразования неправильной дроби в смешаннуюКалькулятор преобразования смешанной дроби в неправильнуюКалькулятор сложения, вычитания, умножения и деления дробейКалькулятор возведения дроби в степеньКалькулятор перевода десятичной дроби в обыкновеннуюКалькулятор перевода обыкновенной дроби в десятичнуюКалькулятор сравнения дробей Калькулятор приведения дробей к общему знаменателюКалькуляторы (тригонометрия)Калькулятор синуса угла
Калькулятор косинуса угла
Калькулятор тангенса угла
Калькулятор котангенса угла Калькулятор секанса угла Калькулятор косеканса угла Калькулятор арксинуса угла
Калькулятор арккосинуса угла
Калькулятор арктангенса угла
Калькулятор арккотангенса угла Калькулятор арксеканса угла Калькулятор арккосеканса угла Калькуляторы систем счисленияКалькулятор перевода чисел из арабских в римские и из римских в арабскиеКалькулятор перевода чисел в различные системы счисленияКалькулятор сложения, вычитания, умножения и деления двоичных чиселСистемы счисления теорияN2 | Двоичная система счисленияN3 | Троичная система счисленияN4 | Четырехичная система счисленияN5 | Пятеричная система счисленияN6 | Шестеричная система счисленияN7 | Семеричная система счисленияN8 | Восьмеричная система счисленияN9 | Девятеричная система счисленияN11 | Одиннадцатиричная система счисленияN12 | Двенадцатеричная система счисленияN13 | Тринадцатеричная система счисленияN14 | Четырнадцатеричная система счисленияN15 | Пятнадцатеричная система счисленияN16 | Шестнадцатеричная система счисленияN17 | Семнадцатеричная система счисленияN18 | Восемнадцатеричная система счисленияN19 | Девятнадцатеричная система счисленияN20 | Двадцатеричная система счисленияN21 | Двадцатиодноричная система счисленияN22 | Двадцатидвухричная система счисленияN23 | Двадцатитрехричная система счисленияN24 | Двадцатичетырехричная система счисленияN25 | Двадцатипятеричная система счисленияN26 | Двадцатишестеричная система счисленияN27 | Двадцатисемеричная система счисленияN28 | Двадцативосьмеричная система счисленияN29 | Двадцатидевятиричная система счисленияN30 | Тридцатиричная система счисленияN31 | Тридцатиодноричная система счисленияN32 | Тридцатидвухричная система счисленияN33 | Тридцатитрехричная система счисленияN34 | Тридцатичетырехричная система счисленияN35 | Тридцатипятиричная система счисленияN36 | Тридцатишестиричная система счисленияКалькуляторы (Теория чисел) Калькулятор выражений Калькулятор со скобкамиКалькулятор разложения числа на простые множителиКалькулятор НОД и НОК Калькулятор НОД и НОК по алгоритму ЕвклидаКалькулятор НОД и НОК для любого количества чиселПредставление многозначных чисел в виде суммы разрядных слагаемыхКалькулятор деления числа в данном отношенииКалькулятор процентовКалькулятор перевода числа с Е в десятичноеКалькулятор экспоненциальной записи чисел Калькулятор нахождения факториала числа Калькулятор нахождения логарифма числа Калькулятор квадратных уравнений Калькулятор остатка от деления Калькулятор корней с решением Калькулятор нахождения периода десятичной дроби Калькулятор больших чиселКалькулятор округления числаКалькуляторы площади геометрических фигурПлощадь квадратаПлощадь прямоугольникаКалькуляторы (Комбинаторика) Калькулятор нахождения числа перестановок из n элементовКалькулятор нахождения числа сочетаний из n элементовКалькулятор нахождения числа размещений из n элементовГенератор Pdf с примерамиТренажёры решения примеровТренажер сложения Тренажёр вычитания Тренажёр умножения Тренажёр деления Тренажёр таблицы умножения Тренажер счета для дошкольников Тренажер счета на внимательность для дошкольников Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ. Тренажер решения примеров с разными действиями Тренажёры решения столбикомТренажёр сложения столбиком Тренажёр вычитания столбиком Тренажёр умножения столбиком Тренажёр деления столбиком с остатком Калькуляторы решения столбикомКалькулятор сложения, вычитания, умножения и деления столбикомКалькулятор деления столбиком с остаткомКалькуляторы линейная алгебра и аналитическая геометрияКалькулятор сложения и вычитания матрицКалькулятор умножения матрицКалькулятор транспонирование матрицыКалькулятор нахождения определителя (детерминанта) матрицыКалькулятор нахождения обратной матрицы Длина отрезка. Онлайн калькулятор расстояния между точками Онлайн калькулятор нахождения координат вектора по двум точкам Калькулятор нахождения модуля (длины) вектора Калькулятор сложения и вычитания векторов Калькулятор скалярного произведения векторов через длину и косинус угла между векторамиКалькулятор скалярного произведения векторов через координаты Калькулятор векторного произведения векторов через координатыКалькулятор смешанного произведения векторовКалькулятор умножения вектора на числоКалькулятор нахождения угла между векторамиКалькулятор проверки коллинеарности векторовКалькулятор проверки компланарности векторовКонвертеры величинКонвертер единиц длиныКонвертер единиц скоростиКонвертер единиц ускоренияКалькуляторы (физика)

Механика

Калькулятор вычисления скорости, времени и расстояния Калькулятор вычисления ускорения, скорости и перемещения Калькулятор вычисления времени движенияКалькулятор времениВторой закон Ньютона. Калькулятор вычисления силы, массы и ускорения. Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния.Импульс тела. Калькулятор вычисления импульса, массы и скорости Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы.Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения

Оптика

Калькулятор отражения и преломления света

Электричество и магнетизм

Калькулятор Закона Ома Калькулятор Закона Кулона Калькулятор напряженности E электрического поляКалькулятор нахождения точечного электрического заряда Q Калькулятор нахождения силы F действующей на заряд q Калькулятор вычисления расстояния r от заряда q Калькулятор вычисления потенциальной энергии W заряда qКалькулятор вычисления потенциала φ электростатического поляКалькулятор вычисления электроемкости C проводника и сферы

Конденсаторы

Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторовКалькулятор вычисления расстояния d между пластинами в плоском конденсаторе Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе Калькулятор вычисления энергии W заряженного конденсатора Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторовКалькуляторы по астрономии Вес тела на других планетахУскорение свободного падения на планетах Солнечной системы и их спутникахГенераторыГенератор примеров по математике Генератор случайных чисел Генератор паролей

Перевод обыкновенной дроби в десятичную



Перевод обыкновенной дроби в десятичную

Запишем числа 18 и 75, как показано выше.

", "

Начнем рассматривать по очереди числа, образованные цифрами числа 18, пока не дойдем до числа, которое больше или равно 75.
Сейчас выделено число 1, оно меньше 75, поэтому нужно продолжить движение вправо.

", "

Сейчас выделено число 18, оно меньше 75, поэтому нужно продолжить движение вправо.

", "

Мы достигли числа 180, которое больше 75. Число 180 является неполным делимым.
Поскольку в делимом мы при движении вправо перешли через запятую (было 18, а стало 18,0), то в частном пишем \"0,\"

", "

Определим, на какую цифру нужно умножить делитель 75, чтобы получить как можно большее число, меньшее или равное неполному делимому 180.
Очевидно, что на 2, т.к. 75 &middot 2 = 150, что меньше 180, а 75 &middot 3 уже равно 225, что больше 180. Поэтому запишем в частное цифру 2.

", "

Теперь умножим 75 на 2 и запишем результат 150 под неполным делимым, как показано выше.

", "
18,0 75  
15 0 0,2 
 3 0

Выполним вычитание в столбик. 180 - 150 = 30.

", "
18,0 75  
15 0 0,2 
 3 00

Снесем из делимого следующую цифру 0.

", "
18,0 75  
15 0 0,24 
 3 00

Определим, на какую цифру нужно умножить делитель 75, чтобы получить как можно большее число, меньшее или равное неполному делимому 300.
Очевидно, что на 4, т.к. 75 &middot 4 = 300, что как раз равно неполному делимому. Поэтому запишем в частное цифру 4.

", "
18,0 75  
15 0 0,24 
 3 00
 3 00

Умножим 75 на 4 и запишем результат 300 под неполным делимым, как показано выше.

", "
18,0 75  
15 0 0,24 
 3 00
 3 00
    0

Выполним вычитание в столбик. 300 - 300 = 0.

"]; var icon12=0; function IncArrcon12(){ if (icon120){ icon12=icon12-1; document.getElementById("con12").innerHTML=arrcon12[icon12]; document.getElementById("num12").innerHTML=icon12+1; } if (icon12==0){ document.getElementById("to_begin").style.backgroundImage="url(../images/buttons-inactive.png)"; document.getElementById("prevois").style.backgroundImage="url(../images/buttons-inactive.png)"; } document.getElementById("to_end").style.backgroundImage="url(../images/buttons.png)"; document.getElementById("next").style.backgroundImage="url(../images/buttons.png)"; } function BeginArrcon12(){ icon12=0; document.getElementById("con12").innerHTML=arrcon12[icon12]; document.getElementById("num12").innerHTML=icon12+1; document.getElementById("to_begin").style.backgroundImage="url(../images/buttons-inactive.png)"; document.getElementById("prevois").style.backgroundImage="url(../images/buttons-inactive.png)"; document.getElementById("to_end").style.backgroundImage="url(../images/buttons.png)"; document.getElementById("next").style.backgroundImage="url(../images/buttons.png)"; } function EndArrcon12(){ icon12=arrcon12.length-1; document.getElementById("con12").innerHTML=arrcon12[icon12]; document.getElementById("num12").innerHTML=icon12+1; document.getElementById("to_end").style.backgroundImage="url(../images/buttons-inactive.png)"; document.getElementById("next").style.backgroundImage="url(../images/buttons-inactive.png)"; document.getElementById("to_begin").style.backgroundImage="url(../images/buttons.png)"; document.getElementById("prevois").style.backgroundImage="url(../images/buttons.png)"; }

Запишем числа 18 и 75, как показано выше.

В ряде случаев при переводе обыкновенных дробей в десятичные в результате получаются десятичные периодические дроби – бесконечные дроби, у которых постоянно повторяется одна или несколько цифр после запятой. Например,

1/3 = 0,333… - эта дробь записывается как 0,(3). Период (повторяющиеся цифры) этой дроби 3
5/33 = 0,1515… - дробь записывается как 0,(15). Период (повторяющиеся цифры) этой дроби 15

Как проверить, получится ли периодическая дробь при переводе в десятичную? Очень просто:

  1. Если обыкновенная дробь сократима, сократить ее.
  2. Разложить на множители знаменатель дроби. Если в разложении присутствуют множители, отличные от 2 и 5, то получится периодическая дробь. Если все множители разложения равны 2 и 5, то получится конечная дробь.

Онлайн калькулятор перевода
обыкновенных дробей в десятичные

Для того, чтобы перевести обыкновенную дробь в десятичную, воспользуйтесь нашим калькулятором вверху страницы. Вы получите пошаговое, подробное объяснение процесса деления в столбик числителя на знаменатель.

Вычисления с обыкновенными и десятичными дробями

Калькулятор осуществляет умножение, разность, сумму и деление двух простых или десятичных дробей. Результат сокращяется.




 
Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 93

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 93

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 110

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 112

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 112

 
Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 93

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 93

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 110

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 112

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 112

 
Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 93

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 93

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 110

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 112

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 112


 
Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 93

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 93

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 110

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 112

Warning: A non-numeric value encountered in /home/skraidan/domains/kontroliniai.lt/public_html/trupmena-1-ru.php on line 112

Как рассчитать проценты, процент от числа

Квадратное уравнение - Калькулятор



Другие полезные темы:







Делимся знаниями

Если думаешь, что Это интересно для друга, напиши

Перевод дроби в проценты. Онлайн-калькулятор и формулы

1) Чтобы преобразовать обыкновенную дробь в проценты нужно числитель дроби разделить на знаменатель и умножить на 100.
Формула: x = Числитель / Знаменатель * 100

2) Чтобы преобразовать проценты в десятичную дробь, нужно число процентов разделить на 100.
Формула: x = Процент / 100

3) Чтобы преобразовать проценты в обыкновенную дробь, нужно в числитель дроби поместить число процентов, а в знаменатель - число 100. В случае, если число процентов не является целым числом, то числитель и знаменатель дроби умножаем на 10n, где n - это число знаков после запятой в числителе. И, наконец, производим сокращение числителя и знаменателя, если это возможно.

Перевод обыкновенной дроби в проценты

Есть дробь 2/25. Делим 2 на 25 и умножаем на 100. Получаем 2 : 25 * 100 = 8%.

Перевод процентов в десятичную дробь

Для перевода 17,8% в десятичную дробь делим 17,8 на 100. Получаем результат 17,8 : 100 = 0,178

Перевод процентов в обыкновенную дробь

Пример 1
Переведем 96% в обыкновенную дробь, которая будет выглядеть так (см. пункт 3 выше): 96/100. Сокращаем числитель и знаменатель на 4. Результат - 24/25

Пример 2
Переведем 20,125% в обыкновенную дробь. Сначала поместим в числитель дроби 20,125 а в знаменатель 100. Получится 20,125/100. Поскольку числитель не является целым числом (3 знака после запятой), то умножаем числитель и знаменатель на 103=1000. Получаем дробь с целочисленным числителем - 20125/100000. Сокращаем числитель и знаменатель на 125 и получаем результат - 161/800

Онлайн-калькулятор

Рассчитать

Поделитесь информацией с друзьями

Другие калькуляторы

Перевод периодической дроби в обыкновенную
Рассчитать процент НДС
Калькулятор дробей
Калькулятор процентов

деление, умножение, вычитание и сложение обыкновенных дробей.

Как работать с калькулятором обыкновенных дробей?

Калькулятор предназначен для решения простых дробей и дробей с целыми числами (смешанных). В будущем, планируется внедрение функции решения десятичных дробей, но в данный момент она отсутствует.

Для начала работы с дробным калькулятором необходимо понять очень простой принцип ввода данных. Все целые числа вводятся с помощью больших кнопок, расположенных слева. Все числители вводятся с помощью маленьких белых кнопок, расположенных в правом верхнем блоке цифр. Все знаменатели, соответственно, вводятся путем нажатия на кнопки в правом нижнем углу. Данный способ ввода данных является в некотором роде инновационным, поскольку четко разграничивает целое, числитель и знаменатель, что облегчает вычисления, экономит время и делает взаимодействие с приложением более эффективным.

Допустим, вам требуется сложить квадратный корень из двух пятых и одну целую две девятых в шестой степени. Начните вводить пример с кнопки корня. После этого нажмите на цифру 2 в области числителя и на цифру пять в области знаменателя. Первое слагаемое готово. Теперь нажмите на знак «+» - это действие сложения. Далее введите целое число один на основной клавиатуре, потом число два в области числителя и девять в области знаменателя.», после чего на цифру шесть на основной клавиатуре. В результате, получится готовый пример:

Теперь нажмите на кнопку равно и получите результат калькуляции. В примере выше проиллюстрирован практически весь арсенал возможностей калькулятора дробей. Точно таким же образом, вы можете осуществлять умножение, деление и вычитание дробей, как простых, так и алгебраических, с одинаковыми и разными знаменателями, целыми числами и т.д. Также, калькулятор может вычислить проценты от дробей, что требуется не так часто, но тем не менее очень важно для решения многих актуальных задач.

Если вам требуется сделать положительное число отрицательным, то сначала введите число, а потом нажмите на кнопку «+/-». После этого число или дробь автоматически обернется в скобки с отрицательным значением или наоборот (в зависимости от изначального статуса числа). Если необходимо удалить число, числитель или знаменатель, то воспользуйтесь соответствующей стрелкой Backspace, которая есть в блоке и числителя и знаменателя. Стрелки работают одинаково и по очереди стирают числа или знаки, находящиеся на дисплее калькулятора.

 

Управление калькулятором дробей с клавиатуры.

Использовать калькулятор дробей онлайн можно не только с помощью компьютерной мыши, но и с помощью клавиатуры. Здесь логика очень проста:

  1. Все целые числа вводятся как обычно, нажатиями на клавиши чисел.
  2. Все числители вводятся с добавлением клавиши CTRL (например, CTRL+1).
  3. Все знаменатели вводятся с добавлением клавиши ALT (например, ALT+2).

Действия умножения, деления, сложения и вычитания так же инициируются соответствующими кнопками клавиатуры, если они есть (обычно располагаются в правой части, в так называемой области Numpad). Удаление производится нажатием на клавишу Backspace. Действие очистки (красная кнопка «C») вызывается нажатием на клавишу «C». Квадратный корень – нажатием на соседнюю клавишу «V» . Удаление производится нажатием на клавишу Backspace.

Зачем нужен калькулятор дробей онлайн?

Калькулятор дробей онлайн предназначен для решения обыкновенных и смешанных дробей (с целыми числами). Решение дробей часто требуется школьникам и студентам, а также инженерам и аспирантам. Наш калькулятор предоставляет возможность производить с дробями следующие действия: деление дробей, умножение дробей, сложение дробей и вычитание дробей. Также, калькулятор умеет работать с корнями и степенями, а еще с отрицательными числами, благодаря чему он многократно превосходит аналогичные онлайн приложения.

Калькулятор простых дробей онлайн поможет вам решить примеры с дробями и при этом вам не надо беспокоиться о том, как предварительно сократить дробь. Здесь это сделается автоматически, т.к. приложение само вычисляет общий знаменатель и выдает вам готовый результат на экран.

В чем преимущества такого способа решения дробей?

Калькулятор поддерживает работу со скобками, что позволяет решать дроби даже в сложных математических примерах. В частности, действия со скобками часто требуются при вычислении алгебраических дробей или отрицательных дробей, над которыми постоянно приходится корпеть всем школьникам средних классов. Дополнительно, вы можете использовать этот калькулятор для сокращения дробей или решения дробей с разными знаменателями. Более того, в отличии от многих других бесплатных сервисов, данный калькулятор умеет работать с двумя, тремя, четырьмя и вообще с любым количеством дробей и чисел.

Калькулятор обыкновенных дробей полностью бесплатный и не требует регистрации. Вы можете использовать его в любое время дня и ночи. Работать можно с помощью мыши или прямо с клавиатуры (это касается как чисел, так и действий). Мы постарались реализовать максимально удобный интерфейс дробных вычислений, благодаря чему сложные математические калькуляции превратятся для вас в одно удовольствие! 🙂

Онлайн калькулятор дробей с решением со степенями со скобками с буквами

Данный онлайн калькулятор дробей предназначен для сложения, вычитания, деления и умножения между собой обыкновенных дробей. А так же дробей с целой частью и  десятичных дробей.
Основные возможности:

  1. Сложение, вычитание, деление и умножение дробей.
  2. Расчет дробей с подробнейшим решением.
  3. Расчет дробей со степенями, скобками и буквами.
  4. Сокращение дробей.
  5. Поддержка до трех дробей онлайн.

На данном калькуляторе можно посчитать сложение вычитание деление или умножение дробей.
Калькулятор умеет:

  1. Вносить целую часть дроби в числитель для смешанных дробей.
  2. Расчет дробей со скобками- поддержка до двух уровней вложенности скобок.
  3. Расчет дробей со степенями - степенью может быть только число.
  4. Расчет дробей с буквами - любые анг. буквы или символы.
  5. Сокращение дробей - только для дробей без букв.

Основные символы:

  1. * символ звездочки интерпретируется как умножение.
  2. / слеш интерпретируется как деление.(-2) +1.
  3. При сложении дробей состоящих только из чисел калькулятор вычисляет НОД и НОК.
  4. При расчете сразу трех дробей сначала выполняется операция умножение(деления), затем сложения(вычитания). Для изменения этого порядка поставьте галочку в поле "Большие скобки" и выберите нужный порядок расчета. В этом случае первой будет выполняться операция в больших скобках.

Калькулятор дробей

Ниже приведены несколько калькуляторов дробей, способных выполнять сложение, вычитание, умножение, деление, упрощение и преобразование дробей в десятичные дроби. Поля над сплошной черной линией представляют числитель, а поля ниже - знаменатель.


Калькулятор смешанных чисел


Калькулятор упрощенных дробей


Калькулятор десятичных дробей


Калькулятор дробей в десятичную


Калькулятор дробей большого числа

Используйте этот калькулятор, если числители или знаменатели являются очень большими целыми числами.

В математике дробь - это число, которое представляет собой часть целого. Он состоит из числителя и знаменателя. В числителе указано количество равных частей целого, а в знаменателе - общее количество частей, составляющих указанное целое. Например, в дроби

числитель равен 3, а знаменатель - 8. Более наглядный пример может включать пирог с 8 кусочками. 1 из этих 8 кусочков будет составлять числитель дроби, а всего 8 кусочков, составляющих весь пирог, будут знаменателем.Если бы человек съел 3 ломтика, оставшаяся часть пирога была бы такой, как показано на изображении справа. Обратите внимание, что знаменатель дроби не может быть 0, так как это сделает дробь неопределенной. Дроби могут подвергаться множеству различных операций, некоторые из которых упомянуты ниже.

Дополнение:

В отличие от сложения и вычитания целых чисел, таких как 2 и 8, для этих операций с дробями требуется общий знаменатель. Один из методов нахождения общего знаменателя заключается в умножении числителей и знаменателей всех участвующих дробей на произведение знаменателей каждой дроби.Умножение всех знаменателей гарантирует, что новый знаменатель обязательно будет кратным каждому отдельному знаменателю. Числители также необходимо умножить на соответствующие коэффициенты, чтобы сохранить значение дроби в целом. Это, пожалуй, самый простой способ убедиться, что дроби имеют общий знаменатель. Однако в большинстве случаев решения этих уравнений не будут представлены в упрощенной форме (предоставленный калькулятор вычисляет упрощение автоматически). Ниже приведен пример использования этого метода.

Этот процесс можно использовать для любого количества фракций. Просто умножьте числители и знаменатели каждой дроби в задаче на произведение знаменателей всех остальных дробей (не включая соответствующий знаменатель) в задаче.

Альтернативный метод поиска общего знаменателя состоит в том, чтобы определить наименьшее общее кратное (НОК) знаменателей, а затем сложить или вычесть числители, как если бы это было целое число. Использование наименьшего общего кратного может быть более эффективным и, скорее всего, приведет к дроби в упрощенной форме.В приведенном выше примере знаменатели были 4, 6 и 2. Наименьшее общее кратное - это первое общее кратное из этих трех чисел.

Кратное 2: 2, 4, 6, 8 10, 12
Кратное 4: 4, 8, 12
Кратное 6: 6, 12

Первое общее кратное - 12, так что это наименьшее общее кратное. Чтобы выполнить задачу сложения (или вычитания), умножьте числители и знаменатели каждой дроби в задаче на любое значение, которое сделает знаменатели 12, а затем сложите числители.

Вычитание:

Вычитание фракции по сути то же самое, что и сложение дроби. Для выполнения операции требуется общий знаменатель. Обратитесь к разделу добавления, а также к приведенным ниже уравнениям для пояснения.

Умножение:

Умножение дробей довольно просто. В отличие от сложения и вычитания, нет необходимости вычислять общий знаменатель для умножения дробей. Просто числители и знаменатели каждой дроби умножаются, и результат образует новый числитель и знаменатель.По возможности решение следует упростить. Обратитесь к приведенным ниже уравнениям для пояснения.

Дивизион:

Процесс деления дробей аналогичен процессу умножения дробей. Чтобы разделить дроби, дробь в числителе умножается на величину, обратную дроби в знаменателе. Число, обратное числу , равно -

. Когда a является дробью, это, по сути, включает в себя замену числителя и знаменателя местами.Следовательно, величина, обратная дроби. Обратитесь к приведенным ниже уравнениям для пояснения.

Упрощение:

Часто проще работать с упрощенными дробями. Таким образом, фракционные растворы обычно выражаются в их упрощенных формах.

, например, более громоздкий, чем. Предоставленный калькулятор возвращает входные дроби как в неправильной форме дроби, так и в форме смешанных чисел. В обоих случаях дроби представлены в их низшей форме путем деления числителя и знаменателя на их наибольший общий множитель.

Преобразование между дробями и десятичными знаками:

Преобразование десятичных дробей в дроби выполняется просто. Однако это требует понимания того, что каждый десятичный разряд справа от десятичной точки представляет собой степень 10; первый десятичный разряд - 10 1 , второй - 10 2 , третий - 10 3 и т. д. Просто определите, до какой степени 10 распространяется десятичная дробь, используйте эту степень 10 в качестве знаменателя, введите каждое число справа от десятичной точки в качестве числителя и упростите.Например, если посмотреть на число 0,1234, число 4 находится в четвертом десятичном разряде, что составляет 10 4 или 10 000. Это сделает дробь

, что упрощается до, поскольку наибольший общий делитель между числителем и знаменателем равен 2.

Точно так же дроби, знаменатели которых являются степенями 10 (или могут быть преобразованы в степени 10), могут быть переведены в десятичную форму, используя те же принципы. Возьмем, к примеру, дробь

. Чтобы преобразовать эту дробь в десятичную, сначала преобразуйте ее в дробь.Зная, что первый десятичный разряд представляет 10 -1 , можно преобразовать в 0,5. Если бы вместо этого была дробь, десятичная дробь была бы 0,05 и так далее. Помимо этого, преобразование дробей в десятичные требует операции деления в столбик.

Преобразование общих инженерных дробей в десятичные

В машиностроении дроби широко используются для описания размеров таких компонентов, как трубы и болты. Наиболее распространенные дробные и десятичные эквиваленты перечислены ниже.

64 th 32 nd 16 th 8 th 4 th 2 nd Decimal Decimal
(дюйм к мм)
1/64 0,015625 0,396875
2/64 1/32 0.03125 0,79375
3/64 0,046875 1,1
4/64 2/32 1/16 0,0625 1,5875
5/64 0,078125 1,984375
6/64 3/32 0.09375 2,38125
7/64 0,109375 2,778125
8/64 4/32 2/16 1/8 0,125 3,175
9/64 0,140625 3,571875
10/64 5/32 0.15625 3.96875
11/64 0,171875 4.365625
12/64 6/32 3/16 0,1875 4,7625
13/64 0,203125 5.159375
14/64 7/32 0.21875 5,55625
15/64 0,234375 5.953125
16/64 8/32 4/16 2/8 1/4 0,25 6,35
17/64 0,265625 6,746875
18/64 9/32 0.28125 7,14375
19/64 0,296875 7,540625
20/64 10/32 5/16 0,3125 7,9375
21/64 0,328125 8,334375
22/64 11/32 0.34375 8,73125
23/64 0,359375 9.128125
24/64 12/32 6/16 3/8 0,375 9,525
25/64 0,3 9,5
26/64 13/32 0.40625 10,31875
27/64 0,421875 10,715625
28/64 14/32 7/16 0,4375 11,1125
29/64 0,453125 11,509375
30/64 15/32 0.46875 11.
31/64 0,484375 12.303125
32/64 16/32 8/16 4/8 2/4 1/2 0,5 12,7
33/64 0,515625 13.096875
34/64 17/32 0.53125 13.49375
35/64 0,546875 13.8
36/64 18/32 9/16 0,5625 14,2875
37/64 0,578125 14,684375
38/64 19/32 0.59375 15.08125
39/64 0.609375 15.478125
40/64 20/32 10/16 5/8 0,625 15,875
41/64 0,640625 16,271875
42/64 21/32 0.65625 16,66875
43/64 0,671875 17,065625
44/64 22/32 11/16 0,6875 17,4625
45/64 0,703125 17,859375
46/64 23/32 0.71875 18,25625
47/64 0,734375 18,653125
48/64 24/32 12/16 6/8 3/4 0,75 19,05
49/64 0,765625 19,446875
50/64 25/32 0.78125 19.84375
51/64 0,796875 20.240625
52/64 26/32 13/16 0,8125 20,6375
53/64 0,828125 21,034375
54/64 27/32 0.84375 21,43125
55/64 0,859375 21,828125
56/64 28/32 14/16 7/8 0,875 22,225
57/64 0,8 22,621875
58/64 29/32 0. 23,01875
59/64 0,5 23,415625
60/64 30/32 15/16 0,9375 23,8125
61/64 0,953125 24.209375
62/64 31/32 0.96875 24.60625
63/64 0,984375 25.003125
64/64 32/32 16/16 8/8 4/4 2/2 1 25,4

Калькулятор дробей


Калькулятор выполняет базовые и расширенные операции с дробями, выражениями с дробями, объединенными с целыми числами, десятичными знаками и смешанными числами.Он также показывает подробную пошаговую информацию о процедуре расчета дроби. Решайте задачи с двумя, тремя или более дробями и числами в одном выражении.

Правила для выражений с дробями:
Дроби - используйте косую черту «/» между числителем и знаменателем, т.е. для пяти сотых введите 5/100 . Если вы используете смешанные числа, не забудьте оставить один пробел между целой и дробной частью.
Косая черта разделяет числитель (число над дробной чертой) и знаменатель (число ниже).

Смешанные числа (смешанные дроби или смешанные числа) записываются как ненулевое целое число, разделенное одним пробелом и дробью, то есть 1 2/3 (с тем же знаком). Пример отрицательной смешанной дроби: -5 1/2 .
Поскольку косая черта является одновременно знаком для дробной линии и деления, мы рекомендуем использовать двоеточие (:) в качестве оператора деления дробей, то есть 1/2: 3 .

Десятичные числа (десятичные числа) вводятся с десятичной запятой . , и они автоматически переводятся в дроби - i.е. 1,45 .

Двоеточие : и косая черта / являются символом разделения. Может использоваться для деления смешанных чисел 1 2/3: 4 3/8 или может использоваться для записи сложных дробей, например 1/2: 1/3 . 1/2
• сложение дробей и смешанные числа: 8/5 + 6 2/7
• деление целого и дробного числа: 5 ÷ 1/2
• комплексные дроби: 5/8: 2 2/3
• десятичное в дробное: 0.625
• Дробь в десятичную: 1/4
• Дробь в проценты: 1/8%
• сравнение дробей: 1/4 2/3
• умножение дроби на целое число: 6 * 3/4 ​​
• квадратный корень дроби: sqrt (1/16)
• уменьшение или упрощение дроби (упрощение) - деление числителя и знаменателя дроби на одно и то же ненулевое число - эквивалентная дробь: 4/22
• выражение в скобках: 1 / 3 * (1/2 - 3 3/8)
• сложная дробь: 3/4 от 5/7
• кратная дробь: 2/3 от 3/5
• разделите, чтобы найти частное: 3/5 ÷ 2 / 3

Калькулятор следует известным правилам порядка операций .Наиболее распространенные мнемоники для запоминания этого порядка операций:
PEMDAS - круглые скобки, экспоненты, умножение, деление, сложение, вычитание.
BEDMAS - Скобки, экспоненты, деление, умножение, сложение, вычитание
BODMAS - Скобки, порядок, деление, умножение, сложение, вычитание.
GEMDAS - Группирующие символы - скобки () {}, экспоненты, умножение, деление, сложение, вычитание.
Будьте осторожны, всегда выполняйте умножение и деление перед сложением и вычитанием .Некоторые операторы (+ и -) и (* и /) имеют одинаковый приоритет и должны вычисляться слева направо.

Задачи с дробями:

следующие математические задачи »

Сложение, вычитание, деление и умножение дробей

Инструкция по эксплуатации

  • Введите дроби в калькулятор выше.
  • Выберите математическую операцию, которую вы хотите выполнить (сложение, вычитание, умножение, деление), используя серое раскрывающееся поле выбора между двумя дробями.
  • Результаты будут обновляться автоматически при изменении любого значения в калькуляторе.
  • Флажок под калькулятором позволяет вам выбирать между уменьшением дроби до эквивалента наименьшего общего знаменателя (если установлен) или отказом от уменьшения (если не отмечен).

Как вычислить дроби вручную

Как складывать дроби

  • Найдите наименьший общий знаменатель, умножив каждый знаменатель на другой.
  • Умножьте каждый числитель на те же числа, на которые были умножены знаменатели.
  • Сложите числители.
  • Сократить результат до наиболее упрощенного числа.

Как вычесть дроби

  • Найдите наименьший общий знаменатель, умножив каждый знаменатель на другой.
  • Умножьте каждый числитель на те же числа, на которые были умножены знаменатели.
  • Складываем второй числитель с первого.
  • Сократить результат до наиболее упрощенного числа.

Как умножать дроби

  • Умножьте числа сверху вместе.
  • Умножьте числа внизу вместе.
  • Сократить результат до наиболее упрощенного числа.

Как разделить дроби

  • Переверните вторую дробь вверх дном, чтобы получить обратное число.
  • Умножьте дроби вместе (как в разделе умножения выше).
  • Сократить результат до наиболее упрощенного числа.

Дроби: история, актуальность и популярное использование

- Руководство Автор: Корин Б. Аренас , опубликовано 22 октября 2019 г.

Практически каждый день мы имеем дело с дробями. Подумай об этом. Независимо от того, получаете ли вы четвертинки для разнообразия, покупаете одежду со скидкой 75% или готовите с половиной стакана масла, вы используете дроби.

В этом разделе мы поговорим о происхождении дробей, их важности при передаче информации и золотом сечении.

Что такое дроби?

Дроби представляют части целого числа или любое количество равных частей. Он функционирует чтобы описать, как части соотносятся с целым числом.

Для иллюстрации представьте целое число как торт. Если вы разрежете торт на 4 равные части, один кусок будет частью этого торта. В данном случае это 1/4 часть всего торта.

  • 1 представляет один фрагмент или часть целого числа, которое называется числителем .
  • 4 представляет, сколько всего частей содержится в целом числе, которое называется знаменателем .

Краткая история дробей

Слово Происхождение: Термин дробь происходит от латинского слово fractio что означает «сломанный». В раннем английском языке это означает «сломанный кусок или фрагмент ». Английское слово« разрушение »также имеет то же происхождение слова.

Концепция дробей существует более 4000 лет.Но у разных цивилизаций есть свой способ стандартизации дробей для универсального использования.

Египтяне

Согласно Математика на протяжении веков : Мягкая история для учителей и других, египтяне были одними из первых, кто придумал форму дроби еще в 1800 году до нашей эры. Их концепция в основном ограничивалась частями, иначе известными как единичные дроби. Дроби единиц используют 1 в качестве числителя.

Египетские математики создали систему с основанием 10. идея, которая похожа на системы счисления, которые мы используем сегодня.Цифра иероглифы представляли их числа, что означает символы, соответствующие определенное значение.

Поскольку числитель всегда равен 1, они должны были указать только знаменатель. Египтяне отметили знаменатель овалом или точкой над значением. Вот несколько примеров из Математика сквозь века :

Части были выражены как суммы долей единиц. Однако система не позволяла повторять дроби единиц в этой последовательности, что затрудняло выполнение расчетов.Чтобы решить эту проблему, египтяне создали обширные списки таблиц, в которых указаны двойные значения различных частей.

Вавилоняне

Другая цивилизация, создавшая сложную систему для По словам преподавателя математики и автора Лиз Памфри, фракции принадлежали вавилонянам.

Вавилоняне организовали фракции в группы по 60 (основание 60). Сегодня мы обычно группируем числа в группы по 10. Но для вычислений, таких как углы и минуты для времени, мы также используем основание 60.Система сгруппировала дроби по 10 и использовала два символа, один для единицы, а другой для 10.

Ниже приведены символы, представляющие вавилонскую систему счисления от 1 до 20:

.

Однако у них не было символа нуля (который они позже добавили около 311 года до н.э.) или знака, который функционировал как десятичная точка для обозначения дробей целого числа. Это затрудняло интерпретацию чисел.

Например, цифры ниже читаются как 12 и 15.

По словам Памфри, символы также могут читаться как разные значения:

х60 шт. Шестидесятых Номер
12 15
12 15 720 + 15
  • 12 и 15 как отдельные номера
  • 15/12
  • 12 15/60
  • 720 + 15

Как видите, отсутствие индикатора дроби делает его трудно отделить целые числа от дробей.Они, вероятно, полагались на контекст, чтобы разобраться в числовых значениях.

Как египетская, так и вавилонская системы были переданы позже людям в Греции, а затем и к средиземноморской цивилизации.

Греки

В Греции практика использования дробных величин в качестве сумм единицы дроби были довольно распространены до средневековья. Например, Liber Abbaci итальянского математика Фибоначчи - это примечательный текст 13 века. В нем широко использовались дроби, описывающие различные способы преобразования других дробей в суммы единичных дробей.

Чтобы лучше понять, ниже приведена таблица греческого языка. цифровые символы. Обратите внимание, что они такие же, как буквы в греческом алфавит:

Значение шт. Десятки сотен
1 α ι ρ
2 β κ σ
3 γ λ τ
4 δ µ υ
5 ε ν φ
6 ϝ ξ χ
7 ζ ο ψ
8 η π ω
9 θ ϙ ϡ

Греческий запись дробей требует от читателя понимания контекста для правильного интерпретация.Чтобы выделить дробь, они помещают диакритических знаков знак (‘) после знаменателя дроби.

Например, число β (2) становится ½ при записи с диакритический знак, β ’.

Аналогично, µβ (42) становится 1/42 при записи в µβ ’.

Однако здесь возникает путаница: µβ ’также может означать 40 ½. Вот почему понимание контекста имеет решающее значение при интерпретации греческих дробей.

Римлянам

У римлян дроби выражались только словами, которые усложняли любые вычисления.

Их система была основана на единице веса, называемой «as». При таком подходе 1 «as» равнялось 12 унций (римский базовая единица измерения, основа современной унции). Таким образом, дроби имеют знаменатели со значениями кратными 12.

В таблице ниже указаны римские дроби. с соответствующими условиями:

Дробь Римский термин
11/12 deunx для de uncia, 1/12 забрал
10/12 декстанов для декстанов, 1/6 отнято
9/12 dodrans for de quadrans, 1/4 забрано
8/12 bes - bi as for duae partes, 2/3
7/12 септункс для septem unciae
6/12 полуфабрикаты
5/12 quincunx для quinque unciae
4/12 триенс
3/12 квадранты
2/12 секстан
1/12 унция
1/24 semuncia
1/48 сицилий
1/72 сценарий
1/144 скриптум
1/288 scrupulum
китайский

Китайцы написали Девять Главы по математике , датируемые примерно 100 г. до н. Э.С. Он включает текст о дробях, аналогичный тем, которые мы используем сегодня.

Согласно Math Through the Ages , он содержал большинство обычных правил вычисления с дробями, например, как складывать, делить и умножать дроби, а также сокращать дробь до наименьшего значения.

Однако в их системе не использовались неправильные дроби. Например, вместо неправильной дроби 9/4 они использовали бы ее эквивалентную смешанную дробь 2 1/4.

В отличие от западной математики, китайцы сосредоточились на практических приложениях, а не на теоретических рассуждениях и геометрии.

Индейцы

Индейцы разработали способ записи дробей, ближе к тому, что мы используем сегодня.

До 1000 г. до н.э. индуистские мантры в ранний ведический период вызывали силы от десяти до ста и даже до триллиона, согласно сайту The Story of Mathematics. Это свидетельство того, что ранняя индийская цивилизация использовала сложные математические операции, включая дроби, квадраты, кубы и корни.

Около 500 г. до н. Э. Они изобрели систему письма, называемую брахми, которая состояла из 9 цифровых символов и нуля. Учитель математики и писатель Лиз Памфри отмечает, что эти числа во многом повлияли на современные числа, которые мы используем сегодня. См. Изображение ниже.

Индийская система записывала дроби, помещая одно значение поверх другого, точно так же, как сегодня числитель пишется над знаменателем. Однако они не поставили между ними черту. Например, дробь 4/5 будет выглядеть так:

Позже эту систему использовали арабы при торговле с индейцами.Именно арабы нарисовали черту, чтобы отличить верхнее число от нижнего числа в дроби. В конечном итоге это привело к тому, что в современную эпоху мы пишем дроби.

Как дроби улучшают способ передачи информации

По словам доктора Петерсона из MathForum.org: «дроби были изобретены, чтобы обеспечить способ работы с величинами меньше единицы».

Если люди использовали только целые числа, единственный способ сослаться на меньшие количества - использовать меньшие единицы.Это то, что сделали римляне - они использовали целые числа при измерении футов и использовали дюймы, когда им нужно было учитывать меньшие единицы.

Например, вместо 1/12 фута они будут обозначать длину как 1 дюйм, а 1/4 фута будет 3 дюйма. Но что, если вы имеете в виду 2 с половиной фута? Как насчет 1 и 3/4 фута?

Если вы выбираете стандартную длину в соответствии с футами, это сбивает с толку одновременное упоминание футов и дюймов. В основном, фракции позволяют проводить измерения без необходимости создания новые юниты.Было бы лучше учесть измерения в последовательная мода.

США, как правило, больше используют дроби (английское измерение), поскольку они используют чашки, а не весы для измерения при приготовлении пищи и выпечке.

американцев еще не приняли метрическую систему, которая является десятичная система, в которой используются единицы, относящиеся к десятичному коэффициенту. В метрической системе вместо американских единиц измерения обычно используются граммы и литры. за унции, чашки, пинты и так далее.

В таблице ниже показано преобразование объема из английской единицы измерения в ее метрический эквивалент:

США в метрические единицы преобразования объема

1/4 стакана или 2 жидких унции
Обычное количество в США (на английском языке) Метрический эквивалент
1 чайная ложка 5 мл
1 столовая ложка 15 мл
2 столовые ложки 30 мл
60 мл
1/3 стакана 80 мл
1/2 стакана или 4 жидких унции 125 мл
2 / 3 стакана 160 мл
3/4 стакана или 6 жидких унций 180 мл
1 стакан или 8 жидких унций или 1/2 пинты 250 мл
1 ½ стакана или 12 жидких унций 375 мл
2 c ИБП или 1 пинта или 16 жидких унций 500 мл
3 чашки или 1 ½ пинты 700 мл
4 чашки или 2 пинты или 1 кварта 950 мл
4 кварты или 1 галлон 3.8 л
1 унция 28 граммов
1/4 фунта (4 унции) 112 граммов
1/2 фунта (8 унций) 225 граммов
3/4 фунта (12 унций) 337 грамм
1 фунт (16 унций) 450 грамм

Более того, хранение измерений в одной единице позволяет нам складывать, вычитать, умножать и легко делить дроби.Это устраняет проблему преобразования, которая невозможна при измерении между двумя разными единицами.

Чтобы упростить вычисление дробей, воспользуйтесь калькулятором в верхней части этой страницы.

В то время как десятичные дроби предоставляют альтернативный способ обозначения дроби (и более простой способ вычисления дробей с помощью калькулятора), это необходимо понимать традиционные дроби и то, как их значения влияют на целое число.

По данным Thoughtco.com, студенты, которые не осваивают дроби в ранние годы, имеют тенденцию запутаться и испытать математическое беспокойство.Они также упомянули половину американской восьмерки. грейдеры не могут расположить дроби по значению.

Интуитивное обучение дробям помогает детям развить более широкое понимание теоретических математических концепций, позволяя им использовать их в реальной жизни. Это намного лучше, чем запоминать таблицы с единицами измерения или символами.

Золотое сечение и последовательность Фибоначчи

В математике соотношение - это, по сути, сравнение двух числа, которые зависят от типа сравниваемых чисел.

Вы можете встретить такой пример: 1: 3 или 1 из 3. Например, бутылка концентрата апельсинового сока состоит из 1 части апельсина. сок и 3 части воды. Это также можно записать в виде дроби, 1/3.

Коэффициенты относятся к дробям, потому что они сравнивают разные ценности, которые могут представлять собой целое. В этом примере бутылка целиком апельсинового сока.

Золотое сечение - специальное число, представленное греческим символом фи ( φ ) с приблизительным значением 1.618.

Получается путем разделения линии на 2 части, так что длинный отрезок (а) деленная на короткую часть (б) равна всей длине, деленной на длинный раздел.

Чтобы лучше понять, вот иллюстрация со стандартным уравнением:

Исторически сложилось так, что соотношение соблюдалось в древних такие сооружения, как Парфенон и пирамиды Египта. В Великой пирамиде Гизы отношение основания к высоте примерно 1.5717, что является близко к золотому сечению. Он также встречается в повторяющихся закономерностях в природе, таких как как лепестки цветов, ракушки, ветви деревьев и спиральные галактики.

С другой стороны, Фибоначчи последовательность - еще одна известная математическая формула. Последовательность получена из сумма двух предшествующих чисел. Многие источники говорят, что Леонардо Фибоначчи (Леонардо Пизанский) популяризировал его в своей книге Liber Abacci .

Но согласно Live Science, математик Кейт Девлин, автор книги Finding Fibonacci: The Quest to Вновь откройте для себя забытого математического гения, который изменил мир , говорится что Леонардо Фибоначчи на самом деле не «открыл» последовательность.

Древние санскритские письма, в которых использовались индо-арабские цифры системы были первыми, кто обсудил это за столетия до Леонардо Фибоначчи.

Последовательность Фибоначчи выглядит так:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811 и так далее…

Когда математики создают квадраты на основе этой последовательности, они могут нарисовать спираль.

Как золотое сечение связано с последовательностью Фибоначчи?

Исследователи заметили, что когда вы берете любые два последовательных числа Фибоначчи, их отношение очень близко к золотому сечению.Таким образом, φ составляет приблизительно 1,618. Чтобы дать вам представление, см. Таблицу ниже.

1,60035 8
A B B / A
2 3 1,5
3 5 1,666666666…
5
8 13 1,625
Итог

Понятие дроби разработали разные древние цивилизации.Одними из первых, кто изобрели дробную систему с обширными таблицами, были египтяне. Другие древние общества, такие как вавилоняне, греки, римляне и китайцы, также внесли свой вклад в его улучшение. Но на современные цифры и то, как мы пишем дроби, в основном повлияли индейцы, которые ввели индуистско-арабскую систему счисления.

Использование дробей помогает нам легко передавать информацию об измерениях. Это не позволяет людям использовать разные единицы измерения, что упрощает их расчет.

Наконец, дроби связаны со знаменитым золотым рационом и последовательностью Фибоначчи, которая во многом повлияла на то, как мы проектируем все виды структур.

Об авторе

Корин - страстный исследователь и автор финансовых тем, изучающий экономические тенденции, их влияние на население, а также то, как помочь потребителям принимать более мудрые финансовые решения. Другие ее тематические статьи можно прочитать на Inquirer.net и Manileno.com. Она имеет степень магистра творческого письма в Филиппинском университете, одном из ведущих учебных заведений в мире, и степень бакалавра коммуникационных искусств в колледже Мириам.

Веселые мультфильмы по математике

Калькулятор сложения дробей - сложение двух дробей

Этот калькулятор складывает две дроби. Он принимает правильные, неправильные, смешанные дроби и целые числа. Если они существуют, решения и ответы представлены в упрощенном виде, смешанные и целые форматы.

Общие шаги по сложению дробей описаны ниже.

  • Если входные данные представляют собой смешанные дроби или целые числа, преобразуйте их в неправильные дроби.
  • Определите наименьшее общее кратное (НОК).
  • Умножьте левую и правую дроби на коэффициент, чтобы в знаменателе каждой дроби использовалось НОК.
  • Сложите левый и правый числители. Это будет числитель окончательного ответа.
  • Знаменатель окончательного ответа - это просто НОК.
  • Упрощенные и смешанные ответы:
  • Найдите наибольший общий делитель (НОД)
  • Разделите числитель и знаменатель ответа на НОД, чтобы получить упрощенное решение.
  • Если ответ больше единицы, то существует смешанное решение. Просто разделите числитель на знаменатель. Вся часть смешанного числа говорит сама за себя. Дробь смешанного числа - это остаток от исходного знаменателя.
Этот калькулятор автоматически обновит ответ или решение при изменении любого из входных параметров. Входные данные включают поля ввода целых чисел, числителя или знаменателя.
  • Выберите тип дроби или целого числа.Не выбирайте ни одно поле для неправильных или подходящих фракций. Это значение по умолчанию. Выбрано «Смешанный» для смешанных дробей и целое для целых чисел.
  • Введите левую дробь. Это дробь слева от операнда сложения.
  • Введите правильную дробь. Это дробь справа от операнда.
  • Понаблюдайте за пошаговым решением и различными ответами.
Примечание. При просмотре этой страницы на настольном компьютере или ноутбуке ввод числителя и знаменателя можно изменить с помощью колесика мыши, кнопок прокрутки вверх и вниз и клавиш со стрелками на клавиатуре.Мобильный и смартфон версия не поддерживает эти параметры.
Параметр Описание
Неправильное преобразование Если дробь смешанная, отображаются шаги для преобразования в неправильную дробь.
Неправильная фракция Если дробь смешанная, значения окончательной неправильной дроби.
Добавить Показывает фактические шаги сложения.
Наименьшее общее кратное (LCM) Показывает вычисленное наименьшее общее кратное. Это наименьшее число, при котором обе дроби делятся поровну.
Ответ Показывает решение. Обратите внимание, это решение не упрощено.
Наибольший общий делитель Используется для упрощения ответа. Наибольшее или наибольшее целое число, которое разделит числитель и знаменатель без получения дроби.
Разделить на GCD Показывает числитель и знаменатель, разделенные на НОД для уменьшения дроби.
Ответ (упрощенный) Решение в правильном или неправильном формате.
Ответ (смешанный) Если раствор является неправильной дробью, отображается преобразованная смешанная дробь. Смешанная фракция показывает дробь с целой частью в дополнение к оставшейся части фракции.

Калькулятор дробей - базовые и расширенные вычисления с дробями

Используйте этот калькулятор дробей, чтобы легко выполнять вычисления с дробями. Складывайте, вычитайте, умножайте и делите дроби, а также возводите дробь в степень (дробь или нет). Поддерживает оценку смешанных дробей (например, «2 1/3») и отрицательных дробей (например, «-2/3»). Используйте «пи» или «π» вместо числа Пи. Мощный расширенный режим для вычисления целых выражений с дробями.

Быстрая навигация:

  1. Использование калькулятора дробей
  2. Как вычислять дроби
  3. Практические примеры

Использование калькулятора дробей

Калькулятор дробей предлагает два режима: базовый и расширенный.1/2 .

Калькулятор поддерживает:

  • Простые дроби: - например, 1/2, 3/4, 13/5 в обоих режимах.
  • Смешанные фракции: - например, 1 1/2, 2 3/4, 10 3/5 в обоих режимах. Убедитесь, что вы оставили одно пространство между целой частью и дробной частью.
  • Десятичные дроби: - например, 1.5, 3.45, 10.01 в обоих режимах. Вы также можете ввести такие вещи, как 1,5 / 2,5 . Убедитесь, что вы используете точку (.) В качестве десятичного разделителя.у).
  • Группировки / круглые скобки: в расширенном режиме вы можете использовать круглые скобки для группировки элементов и принудительного порядка вычислений. В противном случае расчеты производятся в обычном порядке.
  • Число Пи (π) : вы можете ввести «пи» или «π» в обоих режимах, например pi / 2 в базовом режиме, (pi + 5) / 2 в расширенном режиме. Он будет автоматически преобразован в правильное значение приблизительно 3,14159.
  • Отрицательные дроби : оба режима поддерживают отрицательные дроби, десятичные дроби и числа.

В расширенном режиме порядок вычислений в инструменте следующий: круглые скобки, экспоненты, умножение, деление, сложение, вычитание (PEMDAS).

Результат представлен в виде десятичного числа (точность 12 позиций после десятичной точки) и в виде упрощенной смешанной дроби .

Как вычислить дроби

Принципы математики дробей одинаковы, независимо от того, кодируете ли вы их в калькуляторе или выполняете вычисления вручную.Во-первых, когда складывает или вычитает дроби , вам нужно начать с нахождения наименьшего общего знаменателя, также известного как наименьший общий знаменатель или наименьший общий знаменатель дробей, с которыми вам нужно работать. Это по определению наименьшее положительное целое число, которое делится на каждый знаменатель. ЖК-дисплей - это наименьшее общее кратное (НОК) знаменателей дробей. В этой операции нет необходимости при умножении, делении или возведении в степень.

Затем вам нужно преобразовать смешанные дроби в простые дроби, чтобы упростить работу.Чтобы найти числитель простой дроби, умножьте целую часть на знаменатель и прибавьте к ней числитель дробной части. Знаменатель останется прежним.

Наконец, выполните необходимые операции (сложение, вычитание, умножение, деление), работая с числителями. Затем вы получите результат расчета. Конечно, гораздо проще использовать мощный калькулятор дробей , как наш выше.

Иллюстрируя пошаговый процесс, это:

  1. при сложении или вычитании дробей найдите наименьший общий знаменатель
  2. преобразование смешанных дробей в простые дроби
  3. выполнять арифметические действия с числителями

Это не так сложно, но в определенных сценариях может быть сложно сделать вручную, что не является проблемой для онлайн-калькулятора.

Практические примеры

Пример задания № 1: сложить дроби 1/2 и 3/4.

Решение : Наименьший общий знаменатель 2 и 4 равен 4, поэтому 1/2 = 2/4, а 3/4 остается 3/4. Складываем 2 + 3 = 5, получаем 5/4. В виде смешанной дроби, равной 1 1/4, в десятичном виде: 1,25.

Пример задания № 2: вычесть дроби 1 1/5 и 2/3.

Решение : Сначала преобразуйте 1 1/5 в простую дробь по формуле (1 x 5 + 1) / 5 = 6/5.Наименьший общий знаменатель 5 и 3 равен 15, поэтому 6/5 = 18/15 и 2/3 = 10/15. Вычитая 10 из 18 = 8, получаем 8/15. Это не может быть далее упрощено. В десятичном виде это 0,53 (3). Вы можете проверить результат с помощью нашего инструмента.

Пример задания № 3: Умножение дробей 1/3 и 5/8

Решение : Чтобы вычислить это выражение, просто умножьте числители вместе, а затем знаменатели вместе. Умножив 1 на 5, мы получим 5, умножив 3 на 8, получим 24, так что ответ будет 5/24, или 0.2083 (3).

Калькулятор фракций

- CalcuNation.com

Сложите дроби, вычтите дроби, умножьте дроби или разделите дроби и получите ответ в простейшей форме с помощью этого онлайн-калькулятора дробей.

Калькулятор дробей

Чтобы преобразовать дробь в простейшую форму, попробуйте наш Калькулятор упрощенных дробей

Как складывать дроби?

Пример: Для сложения дробей 1 / 3 и 1 / 5 необходимо сначала изменить дроби так, чтобы знаменатели были одинаковыми.Для этих двух дробей результатом будет 5 / 15 и 3 / 15 .

Второй шаг - сложить числители двух дробей, чтобы найти числитель ответа,
. 5 + 3 = 8.

Сумма равна 8 / 15

Как вычитать дроби?

Пример: для вычитания дробей 10 / 15 и 1 / 5 необходимо сначала изменить дроби так, чтобы знаменатели были одинаковыми.Для этих двух дробей результатом будет 10 / 15 и 3 / 15 .
Второй шаг - вычесть числители двух дробей, чтобы найти числитель ответа,
10 - 3 = 7.
Разница составляет 7 / 15

Как умножать дроби?

Пример: для умножения дробей 10 / 15 и 1 / 5 , вы умножаете числитель первой дроби на числитель второй дроби, чтобы найти числитель ответа.Вы также умножаете знаменатель первой дроби на знаменатель второй дроби, чтобы найти знаменатель ответа. 10 x 1 и 15 x 5
Ответ: 10 / 75 , затем приведенный к простейшей форме 2 / 15 .

Как делить дроби?

Пример: для деления дробей 10 / 15 и 1 / 5 вы сначала находите обратную величину второй дроби.Обратное значение 1 / 5 равно 5 / 1 . Затем вы умножаете первую дробь на обратную величину второй дроби.

10 / 15 ÷ 1 / 5
то же самое, что
10 / 15 x 5 / 1

Ответ: 50 / 15 , сокращенная простейшая форма - 10 / 3 .

Как пользоваться калькулятором дробей

Дополнительные ресурсы...

Википедия по дробям
Видео с дробями для детей
Учебное пособие по дробям

Калькулятор дробей

- лучший инструмент для сложения дробей

Сложите, вычтите, умножьте или разделите две дроби, указав их ниже. Используйте пробел, чтобы отделить целые числа от дроби.

Результат в виде дроби:

Результат как дробь

Результат в виде десятичной дроби:


Шаги к решению

Результат как дробь

Результат в виде десятичной дроби:


Шаги к решению

Результат как дробь

Результат в виде десятичной дроби:


Шаги к решению



Вы пытаетесь рассчитать дюймовые доли?

Как считать дроби

Калькулятор выше позволяет легко складывать, вычитать, умножать или делить дроби и даже показывает всю работу.

Но как считать дроби без калькулятора? См. Инструкции ниже, чтобы узнать, как их складывать, вычитать, умножать или делить.

Как складывать и вычитать дроби

Сложение и вычитание дробей немного отличается от сложения обычных целых чисел. Есть три простых шага, чтобы складывать или вычитать дроби.

Шаг первый: преобразование в дроби с общим знаменателем

При сложении или вычитании дробей первым делом необходимо преобразовать их в эквивалентные дроби с тем же знаменателем.

Для этого сначала найдите наименьший общий знаменатель знаменателей обеих дробей. Наименьший общий знаменатель - это наименьшее число, на которое можно равномерно разделить оба знаменателя.

Затем найдите кратное для каждого знаменателя, которое при умножении равно общему знаменателю. Найдите кратное, разделив общий знаменатель на каждый знаменатель.

Затем умножьте числитель и знаменатель на кратное, чтобы найти эквивалентные дроби с совпадающими знаменателями.

Например, преобразовываем дроби 13 и 14 в дроби с одинаковым знаменателем.

13 = 1 × 43 × 4 = 412
14 = 1 × 34 × 3 = 312


Шаг второй: сложите или вычтите числители

Как только знаменатели совпадают, сложение и вычитание дробей так же просто, как сложение или вычитание числителей.

Чтобы сложить дроби, сложите числители и положите их над общим знаменателем.

Чтобы вычесть, найдите разницу между числителями и положите разницу над общим знаменателем.

Например, , продолжая предыдущий пример, добавим 412 и 312.

412 + 312 = 4 + 312 = 712

Шаг третий: упростите дробь

Последний шаг к сложению или вычитанию дробей - это упростить полученную дробь. Начните с поиска наибольшего общего делителя числителя и знаменателя.Узнайте больше о поиске наибольшего общего фактора для получения дополнительных сведений.

Затем разделите числитель и знаменатель на наибольший общий множитель, который нужно уменьшить. Или просто используйте наш упрощитель дробей, чтобы упростить и увидеть всю работу, необходимую для этого.

Вы также можете использовать наши калькуляторы сложения или вычитания, чтобы легко складывать и вычитать дроби.

Как умножать дроби

Умножить две дроби немного проще, чем сложить или вычесть, выполнив два простых шага.

Шаг первый: умножение числителей и знаменателей

Первый шаг - перемножить числители и умножить знаменатели. Результатом может быть неправильная дробь, но мы уменьшим ее на следующем шаге.

Например, , умножим 23 × 34.

23 × 34 = (2 × 3) (3 × 4)
23 × 34 = 612

Шаг второй: упростите дробь

Как и сложение и вычитание, последний шаг умножения дробей - это упрощение.Для упрощения найдите наибольший общий множитель числителя и знаменателя, а затем разделите их на общий множитель.

Чтобы упростить 612, найдите наибольший общий множитель.

Наибольший общий делитель 6 и 12 равен 6 .


Затем разделите числитель и знаменатель на наибольший общий множитель.

612 = (6 ÷ 6) (12 ÷ 6)
612 = 12

Как делить дроби

Есть два шага, чтобы разделить одну дробь на другую.

Шаг первый: умножьте каждый числитель на противоположный знаменатель

Чтобы разделить одну дробь на другую, начните с умножения первого числителя на второй знаменатель. Затем умножьте второй числитель на первый знаменатель.

Например, разделим 23 на 34.

23 ÷ 34 = (2 × 4) (3 × 3)
23 ÷ 34 = 89

Шаг второй: упростите дробь

Как и при умножении дробей, последний шаг их деления - упростить дробь.См. Инструкции, чтобы упростить дробь выше.

Как рассчитать смешанные дроби

Смешанные дроби могут показаться пугающими, но процесс их вычисления почти такой же, как и для обычных дробей с одним дополнительным шагом.

Первое, что нужно сделать при вычислении смешанной дроби, - это удалить целое число и увеличить числитель.

Начните с умножения целого числа на знаменатель.

Затем добавьте результат к числителю в оставшейся дроби.

Продолжайте выполнять описанные выше шаги, чтобы вычислить дроби после переноса результата в числитель.

Например, преобразовываем смешанную дробь 2 25 в целое число.

Умножьте целое число на знаменатель.

2 × 5 = 10

Добавьте результат в числитель.

10 + 2 = 12

Перепишите дробь.

2 25 = 125

Ознакомьтесь с нашим полным набором инструментов для вычисления дробей.

.



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *