Содержание

Решения дробей 6. Как решать уравнения с дробями

Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия — в том же порядке, как и для обычных чисел. А именно:

  1. Сначала выполняется возведение в степень — избавьтесь от всех выражений, содержащих показатели;
  2. Затем — деление и умножение;
  3. Последним шагом выполняется сложение и вычитание.

Разумеется, если в выражении присутствуют скобки, порядок действий изменяется — все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


Теперь найдем значение второго выражения.

Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем — деление. Заметим, что 14 = 7 · 2 . Тогда:

Наконец, считаем третий пример. Здесь есть скобки и степень — их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно — знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

Многоэтажные дроби

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

Задача. Переведите многоэтажные дроби в обычные:

В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

В последнем примере перед окончательным умножением дроби были сокращены.

Специфика работы с многоэтажными дробями

В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

  1. В числителе стоит отдельное число 7, а в знаменателе — дробь 12/5;
  2. В числителе стоит дробь 7/12, а в знаменателе — отдельное число 5.

Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно — в несколько раз.

Если следовать этому правилу, то приведенные выше дроби надо записать так:

Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок — пара примеров, где действительно возникают многоэтажные дроби:

Задача. Найдите значения выражений:

Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем — частное.

Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

Числителем, а то, на которое делят — знаменателем.

Чтобы записать дробь, напишите сначала ее числитель, затем проведите под этим числом горизонтальную черту, а под чертой напишите знаменатель. Горизонтальная , разделяющая числитель и знаменатель, называется дробной чертой. Иногда ее изображают в виде наклонной «/» или «∕». При этом, числитель записывается слева от черты, а знаменатель справа. Так, например, дробь «две третьих» запишется как 2/3. Для наглядности числитель обычно пишут в верхней части строки, а знаменатель — в нижней, то есть вместо 2/3 можно встретить: ⅔.

Чтобы рассчитать произведение дробей, умножьте сначала числитель одной дроби на числитель другой. Запишите результат в числитель новой дроби . После этого перемножьте и знаменатели. Итоговое значение укажите в новой дроби . Например, 1/3 ? 1/5 = 1/15 (1 ? 1 = 1; 3 ? 5 = 15).

Чтобы поделить одну дробь на другую, умножьте сначала числитель первой на знаменатель второй. То же произведите и со второй дробью (делителем). Или перед выполнением всех действий сначала «переверните» делитель, если вам так удобнее: на месте числителя должен оказаться знаменатель. После этого умножьте знаменатель делимого на новый знаменатель делителя и перемножьте числители. Например, 1/3: 1/5 = 5/3 = 1 2/3 (1 ? 5 = 5; 3 ? 1 = 3).

Источники:

  • Основные задачи на дроби

Дробные числа позволяют выражать в разном виде точное значение величины. С дробями можно выполнять те же математические операции, что и с целыми числами: вычитание, сложение, умножение и деление. Чтобы научиться решать дроби , надо помнить о некоторых их особенностях. Они зависят от вида дроби , наличия целой части, общего знаменателя. Некоторые арифметические действия после выполнения требуют сокращения дробной части результата.

Вам понадобится

Инструкция

Внимательно посмотрите на числа. Если среди дробей есть десятичные и непрвильные, иногда удобнее вначале выполнить действия с десятичными, а затем перевести их в неправильный вид. Можете перевести дроби в такой вид изначально, записав значение после запятой в числитель и поставив 10 в знаменатель. При необходимости сократите дробь, разделив числа выше и ниже на один делитель. Дроби, в которых выделяется целая часть, приведите к неправильному виду, умножив её на знаменатель и прибавив к результату числитель. Данное значения станет новым числителем

дроби . Чтобы выделить целую часть из первоначально неправильной дроби , надо поделить числитель на знаменатель. Целый результат записать от дроби . А остаток от деления станет новым числителем, знаменатель дроби при этом не меняется. Для дробей с целой частью возможно выполнение действий отдельно сначала для целой, а затем для дробной частей. Например, сумма 1 2/3 и 2 ¾ может быть вычислена :
— Переведение дробей в неправильный вид:
— 1 2/3 + 2 ¾ = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;
— Суммирование отдельно целых и дробных частей слагаемых:
— 1 2/3 + 2 ¾ = (1+2) + (2/3 + ¾) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5/12.

Перепишите их через разделитель «:» и продолжите обычное деление.

Для получения конечного результата полученную дробь сократите, разделив числитель и знаменатель на одно целое число, наибольшее возможное в данном случае. При этом выше и ниже черты должны быть целые числа.

Обратите внимание

Не выполняйте арифметические действия с дробями, знаменатели которых отличаются. Подберите такое число, чтобы при умножении на него числителя и знаменателя каждой дроби в результате знаменатели обеих дробей были равны.

Полезный совет

При записи дробных чисел делимое пишется над чертой. Эта величина обозначается как числитель дроби. Под чертой записывается делитель, или знаменатель, дроби. Например, полтора килограмма риса в виде дроби запишется следующим образом: 1 ½ кг риса. Если знаменатель дроби равен 10, такую дробь называют десятичной. При этом числитель (делимое) пишется справа от целой части через запятую: 1,5 кг риса. Для удобства вычислений такую дробь всегда можно записать в неправильном виде: 1 2/10 кг картофеля. Для упрощения можно сократить значения числителя и знаменателя, поделив их на одно целое число. В данном примере возможно деление на 2. В результате получится 1 1/5 кг картофеля. Удостоверьтесь, что числа, с которыми вы собираетесь выполнять арифметические действия, представлены в одном виде.

Уравнения, содержащие переменную в знаменателе можно решать двумя способами:

    Приведя дроби к общему знаменателю

    Используя основное свойство пропорции

Вне зависимости от выбранного способа необходимо после нахождения корней уравнения выбрать из найденных допустимые значения, т.е те, которые не обращают знаменатель в $0$.

1 способ. Приведение дробей к общему знаменателю.

Пример 1

$\frac{2x+3}{2x-1}=\frac{x-5}{x+3}$

Решение:

1.Перенесем дробь из правой части уравнения в левую

\[\frac{2x+3}{2x-1}-\frac{x-5}{x+3}=0\]

Для того чтобы правильно это сделать, вспомним, что при перенесении элементов в другую часть уравнения меняется знак перед выражениями на противоположный. Значит, если в правой части перед дробью был знак «+», то в левой перед ней будет знак «-».Тогда в левой части получим разность дробей.

2.Теперь отметим что у дробей разные знаменатели, значит для того, чтобы составить разность необходимо привести дроби к общему знаменателю. Общим знаменателем будет произведение многочленов, стоящих в знаменателях исходных дробей: $(2x-1)(x+3)$

Для того чтобы получить тождественное выражение, числитель и знаменатель первой дроби необходимо умножить на многочлен $(x+3)$, а второй на многочлен $(2x-1)$.2+11х-5=20х+4$

Тогда дробь примет вид

\[\frac{{\rm 20х+4}}{(2x-1)(х+3)}=0\]

3.Дробь равна $0$, если ее числитель равен 0. Поэтому мы приравниваем числитель дроби к $0$.

\[{\rm 20х+4=0}\]

Решим линейное уравнение:

4.Проведем выборку корней. Это значит, что необходимо проверить, не обращаются ли знаменатели исходных дробей в $0$ при найденных корнях.

Поставим условие, что знаменатели не равны $0$

х$\ne 0,5$ х$\ne -3$

Значит допустимы все значения переменных, кроме $-3$ и $0,5$.

Найденный нами корень является допустимым значением, значит его смело можно считать корнем уравнения. Если бы найденный корень был бы не допустимым значением, то такой корень был бы посторонним и,конечно, не был бы включен в ответ.

Ответ: $-0,2.$

Теперь можем составить алгоритм решения уравнения, которое содержит переменную в знаменателе

Алгоритм решения уравнения, которое содержит переменную в знаменателе

    Перенести все элементы из правой части уравнения в левую. Для получения тождественного уравнения необходимо изменить все знаки, стоящие перед выражениями в правой части на противоположные

    Если в левой части мы получим выражение с разными знаменателями, то приводим их к общему, используя основное свойство дроби. Выполнить преобразования, используя тождественные преобразования и получить итоговую дробь равную $0$.

    Приравнять числитель к $0$ и найти корни получившегося уравнения.

    Проведем выборку корней, т.е. найти допустимые значения переменных, которые не обращают знаменатель в $0$.

2 способ. Используем основное свойство пропорции

Основным свойством пропорции является то, что произведение крайних членов пропорции равно произведению средних членов.

Пример 2

Используем данное свойство для решения этого задания

\[\frac{2x+3}{2x-1}=\frac{x-5}{x+3}\]

1.Найдем и приравняем произведение крайних и средних членов пропорции.

$\left(2x+3\right)\cdot(\ x+3)=\left(x-5\right)\cdot(2x-1)$

\[{2х}^2+3х+6х+9={2х}^2-10х-х+5\]

Решив полученное уравнение, мы найдем корни исходного

2.Найдем допустимые значения переменной.

Из предыдущего решения (1 способ) мы уже нашли, что допустимы любые значения, кроме $-3$ и $0,5$.

Тогда, установив что найденный корень является допустимым значением, мы выяснили, что $-0,2$ будет являться корнем.

для решения математики. Быстро найти решение математического уравнения в режиме онлайн . Сайт www.сайт позволяет решить уравнение почти любого заданного алгебраического , тригонометрического или трансцендентного уравнения онлайн . При изучении практически любого раздела математики на разных этапах приходится решать уравнения онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение уравнений онлайн займет несколько минут. Основное преимущество www.сайт при решении математических уравнений онлайн — это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические уравнения онлайн , тригонометрические уравнения онлайн , трансцендентные уравнения онлайн , а также уравнения с неизвестными параметрами в режиме онлайн . Уравнения служат мощным математическим аппаратом решения практических задач. C помощью математических уравнений можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины уравнений можно найти, сформулировав задачу на математическом языке в виде уравнений и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое уравнение , тригонометрическое уравнение или уравнения содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения уравнений . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических уравнений онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических уравнений онлайн , тригонометрических уравнений онлайн , а также трансцендентных уравнений онлайн или уравнений с неизвестными параметрами. Для практических задач по нахождению корней различных математических уравнений ресурса www.. Решая уравнения онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение уравнений на сайте www.сайт. Необходимо правильно записать уравнение и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением уравнения. Проверка ответа займет не более минуты, достаточно решить уравнение онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении уравнений онлайн будь то алгебраическое , тригонометрическое , трансцендентное или уравнение с неизвестными параметрами.

Приложение

Решение любого типа уравнений онлайн на сайт для закрепления изученного материала студентами и школьниками.. Решение уравнений онлайн. Уравнения онлайн. Различают алгебраические, параметрические, трансцендентные, функциональные, дифференциальные и другие виды уравнений.. Некоторые классы уравнений имеют аналитические решения, которые удобны тем, что не только дают точное значение корня, а позволяют записать решение в виде формулы, в которую могут входить параметры. Аналитические выражения позволяют не только вычислить корни, а провести анализ их существования и их количества в зависимости от значений параметров, что часто бывает даже важнее для практического применения, чем конкретные значения корней. Решение уравнений онлайн.. Уравнения онлайн. Решение уравнения — задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.). Решение уравнений онлайн.. Уравнения онлайн. Вы сможете решить уравнение онлайн моментально и с высокой точностью результата. Аргументы заданных функций (иногда называются «переменными») в случае уравнения называются «неизвестными». Значения неизвестных, при которых это равенство достигается, называются решениями или корнями данного уравнения. Про корни говорят, что они удовлетворяют данному уравнению. Решить уравнение онлайн означает найти множество всех его решений (корней) или доказать, что корней нет. Решение уравнений онлайн.. Уравнения онлайн. Равносильными или эквивалентными называются уравнения, множества корней которых совпадают. Равносильными также считаются уравнения, которые не имеют корней. Эквивалентность уравнений имеет свойство симметричности: если одно уравнение эквивалентно другому, то второе уравнение эквивалентно первому. Эквивалентность уравнений имеет свойство транзитивности: если одно уравнение эквивалентно другому, а второе эквивалентно третьему, то первое уравнение эквивалентно третьему. Свойство эквивалентности уравнений позволяет проводить с ними преобразования, на которых основываются методы их решения. Решение уравнений онлайн.. Уравнения онлайн. Сайт позволит решить уравнение онлайн. К уравнениям, для которых известны аналитические решения, относятся алгебраические уравнения, не выше четвёртой степени: линейное уравнение, квадратное уравнение, кубическое уравнение и уравнение четвёртой степени. Алгебраические уравнения высших степеней в общем случае аналитического решения не имеют, хотя некоторые из них можно свести к уравнениям низших степеней. Уравнения, в которые входят трансцендентные функции называются трансцендентными. Среди них аналитические решения известны для некоторых тригонометрических уравнений, поскольку нули тригонометрических функций хорошо известны. В общем случае, когда аналитического решения найти не удаётся, применяют численные методы. Численные методы не дают точного решения, а только позволяют сузить интервал, в котором лежит корень, до определённого заранее заданного значения. Решение уравнений онлайн.. Уравнения онлайн.. Вместо уравнения онлайн мы представим, как то же самое выражение образует линейную зависимость и не только по прямой касательной, но и в самой точке перегиба графика. Этот метод незаменим во все времена изучения предмета. Часто бывает, что решение уравнений приближается к итоговому значению посредством бесконечных чисел и записи векторов. Проверить начальные данные необходимо и в этом суть задания. Иначе локальное условие преобразуется в формулу. Инверсия по прямой от заданной функции, которую вычислит калькулятор уравнений без особой задержки в исполнении, взаимозачету послужит привилегия пространства. Речь пойдет о студентах успеваемости в научной среде. Впрочем, как и все вышесказанное, нам поможет в процессе нахождения и когда вы решите уравнение полностью, то полученный ответ сохраните на концах отрезка прямой. Линии в пространстве пересекаются в точке и эта точка называется пересекаемой линиями. Обозначен интервал на прямой как задано ранее. Высший пост на изучение математики будет опубликован. Назначить значению аргумента от параметрически заданной поверхности и решить уравнение онлайн сможет обозначить принципы продуктивного обращения к функции. Лента Мебиуса, или как её называет бесконечностью, выглядит в форме восьмерки. Это односторонняя поверхность, а не двухсторонняя. По принципу общеизвестному всем мы объективно примем линейные уравнения за базовое обозначение как есть и в области исследования. Лишь два значения последовательно заданных аргументов способны выявить направление вектора. Предположить, что иное решение уравнений онлайн гораздо более, чем просто его решение, обозначает получение на выходе полноценного варианта инварианта. Без комплексного подхода студентам сложно обучиться данному материалу. По-прежнему для каждого особого случая наш удобный и умный калькулятор уравнений онлайн поможет всем в непростую минуту, ведь достаточно лишь указать вводные параметры и система сама рассчитает ответ. Перед тем, как начать вводить данные, нам понадобится инструмент ввода, что можно сделать без особых затруднений. Номер каждой ответной оценки будет квадратное уравнение приводить к нашим выводам, но этого сделать не так просто, потому что легко доказать обратное. Теория, в силу своих особенностей, не подкреплена практическими знаниями. Увидеть калькулятор дробей на стадии опубликования ответа, задача в математике не из легких, поскольку альтернатива записи числа на множестве способствует увеличению роста функции. Впрочем, не сказать про обучение студентов было бы некорректным, поэтому выскажем каждый столько, сколько этого необходимо сделать. Раньше найденное кубическое уравнение по праву будет принадлежать области определения, и содержать в себе пространство числовых значений, а также символьных переменных. Выучив или зазубрив теорему, наши студенты проявят себя только с лучшей стороны, и мы за них будем рады. В отличие от множества пересечений полей, наши уравнения онлайн описываются плоскостью движения по перемножению двух и трех числовых объединенных линий. Множество в математике определяется не однозначно. Лучшее, по мнению студентов, решение — это доведенная до конца запись выражения. Как было сказано научным языком, не входит абстракция символьных выражений в положение вещей, но решение уравнений дает однозначный результат во всех известных случаях. Продолжительность занятия преподавателя складывается из потребностей в этом предложении. Анализ показал как необходимость всех вычислительных приемов во многих сферах, и абсолютно ясно, что калькулятор уравнений незаменимый инструментарий в одаренных руках студента. Лояльный подход к изучению математики обуславливает важность взглядов разных направленностей. Хотите обозначить одну из ключевых теорем и решите уравнение так, в зависимости от ответа которого будет стоять дальнейшая потребность в его применении. Аналитика в данной области набирает все мощный оборот. Начнем с начала и выведем формулу. Пробив уровень возрастания функции, линия по касательной в точке перегиба обязательно приведет к тому, что решить уравнение онлайн будет одним из главных аспектов в построении того самого графика от аргумента функции. Любительский подход имеет право быть применен, если данное условие не противоречит выводам студентов. На задний план выводится именно та подзадача, которая ставит анализ математических условий как линейные уравнения в существующей области определения объекта. Взаимозачет по направлению ортогональности взаимоуменьшает преимущество одинокого абсолютного значения. По модулю решение уравнений онлайн дает столько же решений, если раскрыть скобки сначала со знаком плюс, а затем со знаком минус. В таком случае решений найдется в два раза больше, и результат будет точнее. Стабильный и правильный калькулятор уравнений онлайн есть успех в достижении намеченной цели в поставленной преподавателем задаче. Нужный метод выбрать представляется возможным благодаря существенным отличиям взглядов великих ученых. Полученное квадратное уравнение описывает кривую линий так называемую параболу, а знак определит ее выпуклость в квадратной системе координат. Из уравнения получим и дискриминант, и сами корни по теореме Виета. Представить выражение в виде правильной или неправильной дроби и применить калькулятор дробей необходимо на первом этапе. В зависимости от этого будет складываться план дальнейших наших вычислений. Математика при теоретическом подходе пригодится на каждом этапе. Результат обязательно представим как кубическое уравнение, потому что его корни скроем именно в этом выражении, для того, чтобы упростить задачу учащемуся в ВУЗе. Любые методы хороши, если они пригодны к поверхностному анализу. Лишние арифметические действия не приведут к погрешности вычислений. С заданной точностью определит ответ. Используя решение уравнений, скажем прямо — найти независимую переменную от заданной функции не так-то просто, особенно в период изучения параллельных линий на бесконечности. В виду исключения необходимость очень очевидна. Разность полярностей однозначна. Из опыта преподавания в институтах наш преподаватель вынес главный урок, на котором были изучены уравнения онлайн в полном математическом смысле. Здесь речь шла о высших усилиях и особых навыках применения теории. В пользу наших выводов не стоит глядеть сквозь призму. До позднего времени считалось, что замкнутое множество стремительно возрастает по области как есть и решение уравнений просто необходимо исследовать. На первом этапе мы не рассмотрели все возможные варианты, но такой подход обоснован как никогда. Лишние действия со скобками оправдывают некоторые продвижения по осям ординат и абсцисс, чего нельзя не заметить невооруженным глазом. В смысле обширного пропорционального возрастания функции есть точка перегиба. В лишний раз докажем как необходимое условие будет применяться на всем промежутке убывания той или иной нисходящей позиции вектора. В условиях замкнутого пространства мы выберем переменную из начального блока нашего скрипта. За отсутствие главного момента силы отвечает система, построенная как базис по трем векторам. Однако калькулятор уравнений вывел, и помогло в нахождении всех членов построенного уравнения, как над поверхностью, так и вдоль параллельных линий. Вокруг начальной точки опишем некую окружность. Таким образом, мы начнем продвигаться вверх по линиям сечений, и касательная опишет окружность по всей ее длине, в результате получим кривую, которая называется эвольвентой. Кстати расскажем об этой кривой немного истории. Дело в том, что исторически в математике не было понятия самой математики в чистом понимании как сегодня. Раньше все ученые занимались одним общим делом, то есть наукой. Позже через несколько столетий, когда научный мир наполнился колоссальным объемом информации, человечество все-таки выделило множество дисциплин. Они до сих пор остались неизменными. И все же каждый год ученые всего мира пытаются доказать, что наука безгранична, и вы не решите уравнение, если не будете обладать знаниями в области естественных наук. Окончательно поставить точку не может быть возможным. Об этом размышлять также бессмысленно, как согревать воздух на улице. Найдем интервал, на котором аргумент при положительном своем значении определит модуль значения в резко возрастающем направлении. Реакция поможет отыскать как минимум три решения, но необходимо будет проверить их. Начнем с того, что нам понадобиться решить уравнение онлайн с помощью уникального сервиса нашего сайта. Введем обе части заданного уравнения, нажмем на кнопу «РЕШИТЬ» и получим в течение всего нескольких секунд точный ответ. В особых случаях возьмем книгу по математике и перепроверим наш ответ, а именно посмотрим только ответ и станет все ясно. Вылетит одинаковый проект по искусственному избыточному параллелепипеду. Есть параллелограмм со своими параллельными сторонами, и он объясняет множество принципов и подходов к изучению пространственного отношения восходящего процесса накопления полого пространства в формулах натурального вида. Неоднозначные линейные уравнения показывают зависимость искомой переменной с нашим общим на данный момент времени решением и надо как-то вывести и привести неправильную дробь к нетривиальному случаю. На прямой отметим десять точек и проведем через каждую точку кривую в заданном направлении, и выпуклостью вверх. Без особых трудностей наш калькулятор уравнений представит в таком виде выражение, что его проверка на валидность правил будет очевидна даже в начале записи. Система особых представлений устойчивости для математиков на первом месте, если иного не предусмотрено формулой. На это мы ответим подробным представление доклада на тему изоморфного состояния пластичной системы тел и решение уравнений онлайн опишет движение каждой материальной точки в этой системе. На уровне углубленного исследования понадобится подробно выяснить вопрос об инверсиях как минимум нижнего слоя пространства. По возрастанию на участке разрыва функции мы применим общий метод великолепного исследователя, кстати, нашего земляка, и расскажем ниже о поведении плоскости. В силу сильных характеристик аналитически заданной функции, мы используем только калькулятор уравнений онлайн по назначению в выведенных пределах полномочий. Рассуждая далее, остановим свой обзор на однородности самого уравнения, то есть правая его часть приравнена к нулю. Лишний раз удостоверимся в правильности принятого нами решения по математике. Во избежание получения тривиального решения, внесем некоторые корректировки в начальные условия по задаче на условную устойчивость системы. Составим квадратное уравнение, для которого выпишем по известной всем формуле две записи и найдем отрицательные корни. Если один корень на пять единиц превосходит второй и третий корни, то внесением правок в главный аргумент мы тем самым искажаем начальные условия подзадачи. По своей сути нечто необычное в математике можно всегда описать с точностью до сотых значений положительного числа. В несколько раз калькулятор дробей превосходит свои аналоги на подобных ресурсах в самый лучший момент нагрузки сервера. По поверхности растущего по оси ординат вектора скорости начертим семь линий, изогнутых в противоположные друг другу направления. Соизмеримость назначенного аргумента функции опережает показания счетчика восстановительного баланса. В математике этот феномен представим через кубическое уравнение с мнимыми коэффициентами, а также в биполярном прогрессе убывания линий. Критические точки перепада температуры во много своем значении и продвижении описывают процесс разложения сложной дробной функции на множители. Если вам скажут решите уравнение, не спешите это делать сию минуту, однозначно сначала оцените весь план действий, а уже потом принимайте правильный подход. Польза будет непременно. Легкость в работе очевидна, и в математике то же самое. Решить уравнение онлайн. Все уравнения онлайн представляют собой определенного вида запись из чисел или параметров и переменной, которую нужно определить. Вычислить эту самую переменную, то есть найти конкретные значения или интервалы множества значений, при которых будет выполняться тождество. Напрямую зависят условия начальные и конечные. В общее решение уравнений как правило входят некоторые переменные и константы, задавая которые, мы получим целые семейства решений для данной постановки задачи. В целом это оправдывает вкладываемые усилия по направлению возрастания функциональности пространственного куба со стороной равной 100 сантиметрам. Применить теорему или лемму можно на любом этапе построения ответа. Сайт постепенно выдает калькулятор уравнений при необходимости на любом интервале суммирования произведений показать наименьшее значение. В половине случаев такой шар как полый, не в большей степени отвечает требованиям постановки промежуточного ответа. По крайней мере на оси ординат в направлении убывания векторного представления эта пропорция несомненно будет являться оптимальнее предыдущего выражения. В час, когда по линейным функциям будет проведен полный точечный анализ, мы, по сути, соберем воедино все наши комплексные числа и биполярные пространства плоскостной. Подставив в полученное выражение переменную, вы решите уравнение поэтапно и с высокой точностью дадите максимально развернутый ответ. Лишний раз проверить свои действия в математике будет хорошим тоном со стороны учащегося студента. Пропорция в соотношении дробей зафиксировала целостность результата по всем важным направлениям деятельности нулевого вектора. Тривиальность подтверждается в конце выполненных действий. С простой поставленной задачей у студентов не может возникнуть сложностей, если решить уравнение онлайн в самые кратчайшие периоды времени, но не забываем о всевозможных правилах. Множество подмножеств пересекается в области сходящихся обозначений. В разных случаях произведение не ошибочно распадается на множители. Решить уравнение онлайн вам помогут в нашем первом разделе, посвященном основам математических приемов для значимых разделов для учащихся в ВУЗах и техникумах студентов. Ответные примеры нас не заставят ожидать несколько дней, так как процесс наилучшего взаимодействия векторного анализа с последовательным нахождением решений был запатентован в начале прошлого века. Выходит так, что усилия по взаимосвязям с окружающим коллективом были не напрасными, другое очевидно назрело в первую очередь. Спустя несколько поколений, ученые всего мира заставили поверить в то, что математика это царица наук. Будь-то левый ответ или правый, все равно исчерпывающие слагаемые необходимо записать в три ряда, поскольку в нашем случае речь пойдет однозначно только про векторный анализ свойств матрицы. Нелинейные и линейные уравнения, наряду с биквадратными уравнениями, заняли особый пост в нашей книге про наилучшие методы расчета траектории движения в пространстве всех материальных точек замкнутой системы. Воплотить идею в жизнь нам поможет линейный анализ скалярного произведения трех последовательных векторов. В конце каждой постановки, задача облегчается благодаря внедрениям оптимизированных числовых исключений в разрез выполняемых наложений числовых пространств. Иное суждение не противопоставит найденный ответ в произвольной форме треугольника в окружности. Угол между двумя векторами заключает в себе необходимый процент запаса и решение уравнений онлайн зачастую выявляет некий общий корень уравнения в противовес начальным условиям. Исключение выполняет роль катализатора во всем неизбежном процессе нахождения положительного решения в области определения функции. Если не сказано, что нельзя пользоваться компьютером, то калькулятор уравнений онлайн в самый раз подойдет для ваших трудных задач. Достаточно лишь вписать в правильном формате свои условные данные и наш сервер выдаст в самые кратчайшие сроки полноценный результирующий ответ. Показательная функция возрастает гораздо быстрее, чем линейная. Об этом свидетельствую талмуды умной библиотечной литературы. Произведет вычисление в общем смысле как это бы сделало данное квадратное уравнение с тремя комплексными коэффициентами. Парабола в верхней части полуплоскости характеризует прямолинейное параллельное движение вдоль осей точки. Здесь стоит упомянуть о разности потенциалов в рабочем пространстве тела. Взамен неоптимальному результату, наш калькулятор дробей по праву занимает первую позицию в математическом рейтинге обзора функциональных программ на серверной части. Легкость использования данного сервиса оценят миллионы пользователей сети интернет. Если не знаете, как им воспользоваться, то мы с радостью вам поможем. Еще хотим особо отметить и выделить кубическое уравнение из целого ряда первостепенных школьнических задач, когда необходимо быстро найти его корни и построить график функции на плоскости. Высшие степени воспроизведения — это одна из сложных математических задач в институте и на ее изучение выделяется достаточное количество часов. Как и все линейные уравнения, наши не исключение по многих объективным правилам, взгляните под разными точками зрений, и окажется просто и достаточно выставить начальные условия. Промежуток возрастания совпадает с интервалом выпуклости функции. Решение уравнений онлайн. В основе изучения теории состоят уравнения онлайн из многочисленных разделов по изучению основной дисциплины. По случаю такого подхода в неопределенных задачах, очень просто представить решение уравнений в заданном заранее виде и не только сделать выводы, но и предсказать исход такого положительного решения. Выучить предметную область поможет нам сервис в самых лучших традициях математики, именно так как это принято на Востоке. В лучшие моменты временного интервала похожие задачи множились на общий множитель в десять раз. Изобилием умножений кратных переменных в калькулятор уравнений завелось приумножать качеством, а не количественными переменными таких значений как масса или вес тела. Во избежание случаев дисбаланса материальной системы, нам вполне очевиден вывод трехмерного преобразователя на тривиальном схождении невырожденных математических матриц. Выполните задание и решите уравнение в заданных координатах, поскольку вывод заранее неизвестен, как и неизвестны все переменные, входящие в пост пространственное время. На короткий срок выдвинете общий множитель за рамки круглых скобок и поделите на наибольший общий делитель обе части заранее. Из-под получившегося накрытого подмножества чисел извлечь подробным способом подряд тридцать три точки за короткий период. Постольку поскольку в наилучшем виде решить уравнение онлайн возможно каждому студенту, забегая вперед, скажем одну важную, но ключевую вещь, без которой в дальнейшем будем непросто жить. В прошлом веке великий ученый подметил ряд закономерностей в теории математики. На практике получилось не совсем ожидаемое впечатление от событий. Однако в принципе дел это самое решение уравнений онлайн способствует улучшению понимания и восприятия целостного подхода к изучению и практическому закреплению пройдённого теоретического материала у студентов. На много проще это сделать в свое учебное время.

=

Как делить дробь на натуральное. Составление системы уравнений

) и знаменатель на знаменатель (получим знаменатель произведения).

Формула умножения дробей:

Например:

Перед тем, как приступить к умножению числителей и знаменателей, необходимо проверить на возможность сокращения дроби . Если получится сократить дробь, то вам легче будет дальше производить расчеты.

Деление обыкновенной дроби на дробь.

Деление дробей с участием натурального числа.

Это не так страшно, как кажется. Как и в случае со сложением , переводим целое число в дробь с единицей в знаменателе. Например:

Умножение смешанных дробей.

Правила умножения дробей (смешанных):

  • преобразовываем смешанные дроби в неправильные;
  • перемножаем числители и знаменатели дробей;
  • сокращаем дробь;
  • если получили неправильную дробь, то преобразовываем неправильную дробь в смешанную.

Обратите внимание! Чтобы умножить смешанную дробь на другую смешанную дробь, нужно, для начала, привести их к виду неправильных дробей, а далее умножить по правилу умножения обыкновенных дробей.

Второй способ умножения дроби на натуральное число.

Бывает более удобно использовать второй способ умножения обыкновенной дроби на число.

Обратите внимание! Для умножения дроби на натуральное число необходимо знаменатель дроби разделить на это число, а числитель оставить без изменения.

Из, приведенного выше, примера понятно, что этот вариант удобней для использования, когда знаменатель дроби делится без остатка на натуральное число.

Многоэтажные дроби.

В старших классах зачастую встречаются трехэтажные (или больше) дроби. Пример:

Чтобы привести такую дробь к привычному виду, используют деление через 2 точки:

Обратите внимание! В делении дробей очень важен порядок деления. Будьте внимательны, здесь легко запутаться.

Обратите внимание, например:

При делении единицы на любую дробь, результатом будет таже самая дробь, только перевернутая:

Практические советы при умножении и делении дробей:

1. Самым важным в работе с дробными выражениями является аккуратность и внимательность. Все вычисления делайте внимательно и аккуратно, сосредоточенно и чётко. Лучше запишите несколько лишних строчек в черновике, чем запутаться в расчетах в уме.

2. В заданиях с разными видами дробей — переходите к виду обыкновенных дробей.

3. Все дроби сокращаем до тех пор, пока сокращать уже будет невозможно.

4. Многоэтажные дробные выражения приводим в вид обыкновенных, пользуясь делением через 2 точки.

5. Единицу на дробь делим в уме, просто переворачивая дробь.

Содержание урока

Сложение дробей с одинаковыми знаменателями

Сложение дробей бывает двух видов:

  1. Сложение дробей с одинаковыми знаменателями
  2. Сложение дробей с разными знаменателями

Сначала изучим сложение дробей с одинаковыми знаменателями. Тут всё просто. Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменения. Например, сложим дроби и . Складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если к пиццы прибавить пиццы, то получится пиццы:

Пример 2. Сложить дроби и .

В ответе получилась неправильная дробь . Если наступает конец задачи, то от неправильных дробей принято избавляться. Чтобы избавится от неправильной дроби, нужно выделить в ней целую часть. В нашем случае целая часть выделяется легко — два разделить на два равно единице:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на две части. Если к пиццы прибавить еще пиццы, то получится одна целая пицца:

Пример 3 . Сложить дроби и .

Опять же складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если к пиццы прибавить ещё пиццы, то получится пиццы:

Пример 4. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Числители необходимо сложить, а знаменатель оставить без изменения:

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы и ещё прибавить пиццы, то получится 1 целая и ещё пиццы.

Как видите в сложении дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы сложить дроби с одинаковыми знаменателя, нужно сложить их числители, а знаменатель оставить без изменения;

Сложение дробей с разными знаменателями

Теперь научимся складывать дроби с разными знаменателями. Когда складывают дроби, знаменатели этих дробей должны быть одинаковыми. Но одинаковыми они бывают не всегда.

Например, дроби и сложить можно, поскольку у них одинаковые знаменатели.

А вот дроби и сразу сложить нельзя, поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Существует несколько способов приведения дробей к одинаковому знаменателю. Сегодня мы рассмотрим только один из них, поскольку остальные способы могут показаться сложными для начинающего.

Суть этого способа заключается в том, что сначала ищется (НОК) знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель. Аналогично поступают и со второй дробью — НОК делят на знаменатель второй дроби и получают второй дополнительный множитель.

Затем числители и знаменатели дробей умножаются на свои дополнительные множители. В результате этих действий, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем.

Пример 1 . Сложим дроби и

В первую очередь находим наименьшее общее кратное знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 2. Наименьшее общее кратное этих чисел равно 6

НОК (2 и 3) = 6

Теперь возвращаемся к дробям и . Сначала разделим НОК на знаменатель первой дроби и получим первый дополнительный множитель. НОК это число 6, а знаменатель первой дроби это число 3. Делим 6 на 3, получаем 2.

Полученное число 2 это первый дополнительный множитель. Записываем его к первой дроби. Для этого делаем небольшую косую линию над дробью и записываем над ней найденный дополнительный множитель:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби и получаем второй дополнительный множитель. НОК это число 6, а знаменатель второй дроби — число 2. Делим 6 на 2, получаем 3.

Полученное число 3 это второй дополнительный множитель. Записываем его ко второй дроби. Опять же делаем небольшую косую линию над второй дробью и записываем над ней найденный дополнительный множитель:

Теперь у нас всё готово для сложения. Осталось умножить числители и знаменатели дробей на свои дополнительные множители:

Посмотрите внимательно к чему мы пришли. Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Таким образом, пример завершается. К прибавить получается .

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы, то получится одна целая пицца и еще одна шестая пиццы:

Приведение дробей к одинаковому (общему) знаменателю также можно изобразить с помощью рисунка. Приведя дроби и к общему знаменателю, мы получили дроби и . Эти две дроби будут изображаться теми же кусками пицц. Различие будет лишь в том, что в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю).

Первый рисунок изображает дробь (четыре кусочка из шести), а второй рисунок изображает дробь (три кусочка из шести). Сложив эти кусочки мы получаем (семь кусочков из шести). Эта дробь неправильная, поэтому мы выделили в ней целую часть. В результате получили (одну целую пиццу и еще одну шестую пиццы).

Отметим, что мы с вами расписали данный пример слишком подробно. В учебных заведениях не принято писать так развёрнуто. Нужно уметь быстро находить НОК обоих знаменателей и дополнительные множители к ним, а также быстро умножать найденные дополнительные множители на свои числители и знаменатели. Находясь в школе, данный пример нам пришлось бы записать следующим образом:

Но есть и обратная сторона медали. Если на первых этапах изучения математики не делать подробных записей, то начинают появляться вопросы рода «а откуда вон та цифра?», «почему дроби вдруг превращаются совсем в другие дроби? «.

Чтобы легче было складывать дроби с разными знаменателями, можно воспользоваться следующей пошаговой инструкцией:

  1. Найти НОК знаменателей дробей;
  2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби;
  3. Умножить числители и знаменатели дробей на свои дополнительные множители;
  4. Сложить дроби, у которых одинаковые знаменатели;
  5. Если в ответе получилась неправильная дробь, то выделить её целую часть;

Пример 2. Найти значение выражения .

Воспользуемся инструкцией, которая приведена выше.

Шаг 1. Найти НОК знаменателей дробей

Находим НОК знаменателей обеих дробей. Знаменатели дробей это числа 2, 3 и 4

Шаг 2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби

Делим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби это число 2. Делим 12 на 2, получаем 6. Получили первый дополнительный множитель 6. Записываем его над первой дробью:

Теперь делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби это число 3. Делим 12 на 3, получаем 4. Получили второй дополнительный множитель 4. Записываем его над второй дробью:

Теперь делим НОК на знаменатель третьей дроби. НОК это число 12, а знаменатель третьей дроби это число 4. Делим 12 на 4, получаем 3. Получили третий дополнительный множитель 3. Записываем его над третьей дробью:

Шаг 3. Умножить числители и знаменатели дробей на свои дополнительные множители

Умножаем числители и знаменатели на свои дополнительные множители:

Шаг 4. Сложить дроби у которых одинаковые знаменатели

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби, у которых одинаковые (общие) знаменатели. Осталось сложить эти дроби. Складываем:

Сложение не поместилось на одной строке, поэтому мы перенесли оставшееся выражение на следующую строку. Это допускается в математике. Когда выражение не помещается на одну строку, его переносят на следующую строку, при этом надо обязательно поставить знак равенства (=) на конце первой строки и в начале новой строки. Знак равенства на второй строке говорит о том, что это продолжение выражения, которое было на первой строке.

Шаг 5. Если в ответе получилась неправильная дробь, то выделить в ней целую часть

У нас в ответе получилась неправильная дробь. Мы должны выделить у неё целую часть. Выделяем:

Получили ответ

Вычитание дробей с одинаковыми знаменателями

Вычитание дробей бывает двух видов:

  1. Вычитание дробей с одинаковыми знаменателями
  2. Вычитание дробей с разными знаменателями

Сначала изучим вычитание дробей с одинаковыми знаменателями. Тут всё просто. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить прежним.

Например, найдём значение выражения . Чтобы решить этот пример, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения. Так и сделаем:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 2. Найти значение выражения .

Опять же из числителя первой дроби вычитаем числитель второй дроби, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 3. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Из числителя первой дроби нужно вычесть числители остальных дробей:

Как видите в вычитании дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения;
  2. Если в ответе получилась неправильная дробь, то нужно выделить в ней целую часть.

Вычитание дробей с разными знаменателями

Например, от дроби можно вычесть дробь , поскольку у этих дробей одинаковые знаменатели. А вот от дроби нельзя вычесть дробь , поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Общий знаменатель находят по тому же принципу, которым мы пользовались при сложении дробей с разными знаменателями. В первую очередь находят НОК знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель, который записывается над первой дробью. Аналогично НОК делят на знаменатель второй дроби и получают второй дополнительный множитель, который записывается над второй дробью.

Затем дроби умножаются на свои дополнительные множители. В результате этих операций, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем.

Пример 1. Найти значение выражения:

У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

Сначала находим НОК знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 4. Наименьшее общее кратное этих чисел равно 12

НОК (3 и 4) = 12

Теперь возвращаемся к дробям и

Найдём дополнительный множитель для первой дроби. Для этого разделим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби — число 3. Делим 12 на 3, получаем 4. Записываем четвёрку над первой дробью:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби — число 4. Делим 12 на 4, получаем 3. Записываем тройку над второй дробью:

Теперь у нас всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Получили ответ

Попробуем изобразить наше решение с помощью рисунка. Если от пиццы отрезать пиццы, то получится пиццы

Это подробная версия решения. Находясь в школе, нам пришлось бы решить этот пример покороче. Выглядело бы такое решение следующим образом:

Приведение дробей и к общему знаменателю также может быть изображено с помощью рисунка. Приведя эти дроби к общему знаменателю, мы получили дроби и . Эти дроби будут изображаться теми же кусочками пицц, но в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю):

Первый рисунок изображает дробь (восемь кусочков из двенадцати), а второй рисунок — дробь (три кусочка из двенадцати). Отрезав от восьми кусочков три кусочка мы получаем пять кусочков из двенадцати. Дробь и описывает эти пять кусочков.

Пример 2. Найти значение выражения

У этих дробей разные знаменатели, поэтому сначала нужно привести их к одинаковому (общему) знаменателю.

Найдём НОК знаменателей этих дробей.

Знаменатели дробей это числа 10, 3 и 5. Наименьшее общее кратное этих чисел равно 30

НОК (10, 3, 5) = 30

Теперь находим дополнительные множители для каждой дроби. Для этого разделим НОК на знаменатель каждой дроби.

Найдём дополнительный множитель для первой дроби. НОК это число 30, а знаменатель первой дроби — число 10. Делим 30 на 10, получаем первый дополнительный множитель 3. Записываем его над первой дробью:

Теперь находим дополнительный множитель для второй дроби. Разделим НОК на знаменатель второй дроби. НОК это число 30, а знаменатель второй дроби — число 3. Делим 30 на 3, получаем второй дополнительный множитель 10. Записываем его над второй дробью:

Теперь находим дополнительный множитель для третьей дроби. Разделим НОК на знаменатель третьей дроби. НОК это число 30, а знаменатель третьей дроби — число 5. Делим 30 на 5, получаем третий дополнительный множитель 6. Записываем его над третьей дробью:

Теперь всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые (общие) знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример.

Продолжение примера не поместится на одной строке, поэтому переносим продолжение на следующую строку. Не забываем про знак равенства (=) на новой строке:

В ответе получилась правильная дробь, и вроде бы нас всё устраивает, но она слишком громоздка и некрасива. Надо бы сделать её проще. А что можно сделать? Можно сократить эту дробь.

Чтобы сократить дробь , нужно разделить её числитель и знаменатель на (НОД) чисел 20 и 30.

Итак, находим НОД чисел 20 и 30:

Теперь возвращаемся к нашему примеру и делим числитель и знаменатель дроби на найденный НОД, то есть на 10

Получили ответ

Умножение дроби на число

Чтобы умножить дробь на число, нужно числитель данной дроби умножить на это число, а знаменатель оставить прежним.

Пример 1 . Умножить дробь на число 1 .

Умножим числитель дроби на число 1

Запись можно понимать, как взять половину 1 раз. К примеру, если пиццы взять 1 раз, то получится пиццы

Из законов умножения мы знаем, что если множимое и множитель поменять местами, то произведение не изменится. Если выражение , записать как , то произведение по прежнему будет равно . Опять же срабатывает правило перемножения целого числа и дроби:

Эту запись можно понимать, как взятие половины от единицы. К примеру, если имеется 1 целая пицца и мы возьмем от неё половину, то у нас окажется пиццы:

Пример 2 . Найти значение выражения

Умножим числитель дроби на 4

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Выражение можно понимать, как взятие двух четвертей 4 раза. К примеру, если пиццы взять 4 раза, то получится две целые пиццы

А если поменять множимое и множитель местами, то получим выражение . Оно тоже будет равно 2. Это выражение можно понимать, как взятие двух пицц от четырех целых пицц:

Умножение дробей

Чтобы перемножить дроби, нужно перемножить их числители и знаменатели. Если в ответе получится неправильная дробь, нужно выделить в ней целую часть.

Пример 1. Найти значение выражения .

Получили ответ . Желательно сократить данную дробь. Дробь можно сократить на 2. Тогда окончательное решение примет следующий вид:

Выражение можно понимать, как взятие пиццы от половины пиццы. Допустим, у нас есть половина пиццы:

Как взять от этой половины две третьих? Сначала нужно поделить эту половину на три равные части:

И взять от этих трех кусочков два:

У нас получится пиццы. Вспомните, как выглядит пицца, разделенная на три части:

Один кусок от этой пиццы и взятые нами два кусочка будут иметь одинаковые размеры:

Другими словами, речь идет об одном и том же размере пиццы. Поэтому значение выражения равно

Пример 2 . Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Пример 3. Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась правильная дробь, но будет хорошо, если её сократить. Чтобы сократить эту дробь, нужно числитель и знаменатель данной дроби разделить на наибольший общий делитель (НОД) чисел 105 и 450.

Итак, найдём НОД чисел 105 и 450:

Теперь делим числитель и знаменатель нашего ответа на НОД, который мы сейчас нашли, то есть на 15

Представление целого числа в виде дроби

Любое целое число можно представить в виде дроби. Например, число 5 можно представить как . От этого пятёрка своего значения не поменяет, поскольку выражение означает «число пять разделить на единицу», а это, как известно равно пятёрке:

Обратные числа

Сейчас мы познакомимся с очень интересной темой в математике. Она называется «обратные числа».

Определение. Обратным к числу a называется число, которое при умножении на a даёт единицу.

Давайте подставим в это определение вместо переменной a число 5 и попробуем прочитать определение:

Обратным к числу 5 называется число, которое при умножении на 5 даёт единицу.

Можно ли найти такое число, которое при умножении на 5, даёт единицу? Оказывается можно. Представим пятёрку в виде дроби:

Затем умножить эту дробь на саму себя, только поменяем местами числитель и знаменатель. Другими словами, умножим дробь на саму себя, только перевёрнутую:

Что получится в результате этого? Если мы продолжим решать этот пример, то получим единицу:

Значит обратным к числу 5, является число , поскольку при умножении 5 на получается единица.

Обратное число можно найти также для любого другого целого числа.

Найти обратное число можно также для любой другой дроби. Для этого достаточно перевернуть её.

Деление дроби на число

Допустим, у нас имеется половина пиццы:

Разделим её поровну на двоих. Сколько пиццы достанется каждому?

Видно, что после разделения половины пиццы получилось два равных кусочка, каждый из которых составляет пиццы. Значит каждому достанется по пиццы.

Деление дробей выполняется с помощью обратных чисел. Обратные числа позволяют заменить деление умножением.

Чтобы разделить дробь на число, нужно эту дробь умножить на число, обратное делителю.

Пользуясь этим правилом, запишем деление нашей половины пиццы на две части.

Итак, требуется разделить дробь на число 2 . Здесь делимым является дробь , а делителем число 2.

Чтобы разделить дробь на число 2, нужно эту дробь умножить на число, обратное делителю 2. Обратное делителю 2 это дробь . Значит нужно умножить на

Умножение и деление дробей.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

Эта операция гораздо приятнее сложения-вычитания ! Потому что проще. Напоминаю: чтобы умножить дробь на дробь, нужно перемножить числители (это будет числитель результата) и знаменатели (это будет знаменатель). То есть:

Например:

Всё предельно просто . И, пожалуйста, не ищите общий знаменатель! Не надо его здесь…

Чтобы разделить дробь на дробь, нужно перевернуть вторую (это важно!) дробь и их перемножить, т.е.:

Например:

Если попалось умножение или деление с целыми числами и дробями — ничего страшного. Как и при сложении, делаем из целого числа дробь с единицей в знаменателе — и вперёд! Например:

В старших классах часто приходится иметь дело с трехэтажными (а то и четырехэтажными!) дробями. Например:

Как эту дробь привести к приличному виду? Да очень просто! Использовать деление через две точки:

Но не забывайте о порядке деления! В отличие от умножения, здесь это очень важно! Конечно, 4:2, или 2:4 мы не спутаем. А вот в трёхэтажной дроби легко ошибиться. Обратите внимание, например:

В первом случае (выражение слева):

Во втором (выражение справа):

Чувствуете разницу? 4 и 1/9!

А чем задается порядок деления? Или скобками, или (как здесь) длиной горизонтальных черточек. Развивайте глазомер. А если нет ни скобок, ни черточек, типа:

то делим-умножаем по порядочку, слева направо !

И еще очень простой и важный приём. В действиях со степенями он вам ох как пригодится! Поделим единицу на любую дробь, например, на 13/15:

Дробь перевернулась! И так бывает всегда. При делении 1 на любую дробь, в результате получаем ту же дробь, только перевернутую.

Вот и все действия с дробями. Вещь достаточно простая, но ошибок даёт более, чем достаточно. Примите к сведению практические советы, и их (ошибок) будет меньше!

Практические советы:

1. Самое главное при работе с дробными выражениями — аккуратность и внимательность! Это не общие слова, не благие пожелания! Это суровая необходимость! Все вычисления на ЕГЭ делайте как полноценное задание, сосредоточенно и чётко. Лучше написать две лишние строчки в черновике, чем накосячить при расчёте в уме.

2. В примерах с разными видами дробей — переходим к обыкновенным дробям.

3. Все дроби сокращаем до упора.

4. Многоэтажные дробные выражения сводим к обыкновенным, используя деление через две точки (следим за порядком деления!).

5. Единицу на дробь делим в уме, просто переворачивая дробь.

Вот вам задания, которые нужно обязательно прорешать. Ответы даны после всех заданий. Используйте материалы этой темы и практические советы. Прикиньте, сколько примеров вы смогли решить правильно. С первого раза! Без калькулятора! И сделайте верные выводы…

Помните – правильный ответ, полученный со второго (тем более – третьего) раза – не считается! Такова суровая жизнь.

Итак, решаем в режиме экзамена ! Это уже подготовка к ЕГЭ, между прочим. Решаем пример, проверяем, решаем следующий. Решили все — проверили снова с первого по последний. И только потом смотрим ответы.

Вычислить:

Порешали?

Ищем ответы, которые совпадают с вашими. Я специально их в беспорядке записал, подальше от соблазна, так сказать… Вот они, ответы, через точку с запятой записаны.

0; 17/22; 3/4; 2/5; 1; 25.

А теперь делаем выводы. Если всё получилось — рад за вас! Элементарные вычисления с дробями — не ваша проблема! Можно заняться более серьёзными вещами. Если нет…

Значит, у вас одна из двух проблем. Или обе сразу.) Нехватка знаний и (или) невнимательность. Но… Это решаемые проблемы.

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия — в том же порядке, как и для обычных чисел. А именно:

  1. Сначала выполняется возведение в степень — избавьтесь от всех выражений, содержащих показатели;
  2. Затем — деление и умножение;
  3. Последним шагом выполняется сложение и вычитание.

Разумеется, если в выражении присутствуют скобки, порядок действий изменяется — все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем — деление. Заметим, что 14 = 7 · 2 . Тогда:

Наконец, считаем третий пример. Здесь есть скобки и степень — их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно — знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

Многоэтажные дроби

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

Задача. Переведите многоэтажные дроби в обычные:

В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

В последнем примере перед окончательным умножением дроби были сокращены.

Специфика работы с многоэтажными дробями

В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

  1. В числителе стоит отдельное число 7, а в знаменателе — дробь 12/5;
  2. В числителе стоит дробь 7/12, а в знаменателе — отдельное число 5.

Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно — в несколько раз.

Если следовать этому правилу, то приведенные выше дроби надо записать так:

Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок — пара примеров, где действительно возникают многоэтажные дроби:

Задача. Найдите значения выражений:

Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем — частное.

Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

Дробь – это одна или более долей целого, за которое обычно принимается единица (1). Как и с натуральными числами, с дробями можно выполнять все основные арифметические действия (сложение, вычитание, деление, умножения), для этого нужно знать особенности работы с дробями и различать их виды. Существует несколько видов дробей: десятичные и обыкновенные, или простые. Своя специфика есть у каждого вида дробей, но, обстоятельно разобравшись один раз, как с ними обращаться, вы сможете решать любые примеры с дробями, поскольку будете знать основные принципы выполнения арифметических вычислений с дробями. Рассмотрим на примерах как разделить дробь на целое число, используя разные виды дробей.

Как разделить простую дробь на натуральное число?
Обыкновенными или простыми называют дроби, записывающиеся в виде такого отношения чисел, при котором вверху дроби указывается делимое (числитель), а внизу – делитель (знаменатель) дроби. Как разделить такую дробь на целое число? Рассмотрим на примере! Допустим, нам нужно разделить 8/12 на 2.


Для этого мы должны выполнить ряд действий:
Таким образом, если перед нами стоит задача разделить дробь на целое число, схема решения будет выглядеть примерно так:


Подобным образом можно разделить любую обыкновенную (простую) дробь на целое число.

Как разделить десятичную дробь на целое число?
Десятичная дробь — это такая дробь, которая получается вследствие деления единицы на десять, тысячу и так далее частей. Арифметические действия с десятичными дробями выполняются довольно просто.

Рассмотрим на примере как разделить дробь на целое число. Допустим, нам нужно поделить десятичную дробь 0,925 на натуральное число 5.


Подводя итоги, остановимся на двух основных моментах, которые важны при выполнении операции деления десятичных дробей на целое число:
  • для разделения десятичной дроби на натуральное число применяют деление в столбик;
  • запятая ставится в частном тогда, когда закончено деление целой части делимого.
Применяя эти простые правила, всегда можно без особого труда разделить любую десятичную или простую дроби на целое число.

Помощь по работе с программой LoviOtvet

Ниже приведены наиболее часто встречающиеся вопросы по использованию решебника-калькулятора для школьников и родителей ЛовиОтвет

Ввод данных

Операторы (математические действия)
Кроме основного набора арифметических действий, являющихся базой для всех остальных вычислений, а именно — деление, вычитание, сложение, умножение Вы сможете оперировать дробями (в том числе простыми), а также производить вычисления используя тригонометрические функции.

Название Обозначение Кол-во
аргументов
Приоритет Пример Готовность
1Сложение+21x+y+
2Минус1 или 21x-y+
3Умножение*22x*y+
4Деление/ или :22x/y+
5Дробная черта//241//3+
6Разделитель целой и дробной части в смешанной дробипробел231 2//3+
7Возведение в степень^26x^y+
8Равенство=2x=y+
9Синусsin15sin(x)+
10Косинусcos15cos(x)+
11Тангенсtan15tan(x)+
12Котангенсctg15ctg(x)+
13Секансsec15sec(x)+
14Косекансcsc15csc(x)+
15Арксинусarcsin15arcsin(x)
16Арккосинусarccos15arccos(x)
17Арктангенсarctan15arctan(x)
18Арккотангенсarcctg15arcctg(x)
19Арксекансarcsec15arcsec(x)
20Арккосекансarccsc15arccsc(x)
21Модульabs15abs(x)+
22Процент%25x%y+
23Гиперболический синусsinh15sinh(x)
24Гиперболический косинусcosh15cosh(x)
25Гиперболический тангенсtanh15tanh(x)
26Гиперболический котангенсctgh15ctgh(x)
27Гиперболический секансsech15sech(x)
28Гиперболический косекансcsch15csch(x)
29Гиперболический арксинусarcsinh15arcsinh(x)
30Гиперболический арккосинусarccosh15arccosh(x)
31Гиперболический арктангенсarctanh15arctanh(x)
32Гиперболический арккотангенсarcctgh15arcctgh(x)
33Гиперболический арксекансarcsech15arcsech(x)
34Гиперболический арккосекансarccsch15arccsch(x)
35Целочисленное делениеdiv22(x)div(y)+
36Остаток от деленияmod22(x)mod(y)+
37Натуральный логирифмln16ln(x)
38Десятичный логарифмlg16lg(x)
39Логарифм по произвольному основанияlog26log(x;y)
40Корень произвольной степениroot26(x)root(y)+
41Округление до ближайшего целогоround15round(x)+
42Отбрасывание дробной частиtrunc15trunc(x)+
43Отбрасывание целой частиfrac15frac(x)+
44Округление до наименьшего целомуceil15ceil(x)+
45Округление до наибольшего целогоfloor15floor(x)+
46Факториал!17x!+
47Двойной факториал!17x!!+

Ввод чисел

Ограничения
Максимальное количество значащих цифр в числе — 15, при большем их количестве число будет автоматически округляться.

Примеры:
123456789012345 -> 123456789012345
1234567890123456 -> 1.23456789012346E15
0.123456789012345 -> 0.123456789012345
0.1234567890123456 -> 0.123456789012346

Область допустимых значений для вводимых данных:
[3.37×10-4932;1.18×104932]

При выходе за границы интервала при вводе данных, вычислении ответа либо промежуточных результатов возникает ошибка.

Ввод дробей

Виды дробей:

Десятичная
Десятичным разделителем может являться точка или запятая.
Пример: 1.2

Обыкновенная
Числитель и знаменатель должны являться или натуральными числами (если дробь одноэтажная) или корректными обыкновенными дробями (если дробь многоэтажная).
Пример: 1//3; 1//3//7//9

Смешанная
Дробь состоит и целой части и корректной обыкновенной дроби, которая может быть многоэтажной.E.

Примеры:
7E6 = 7*106 = 7*1000000 = 7000000
1.23456E-3 = 1.23456*10-3 = 1.23456 * 0.001 = 0.00123456

Ввод переменных

Переменные, или неизвестные, обозначаются прописными или строчными латинскими буквами, возможно с индексом.

Примеры:
х1 — переменная с индексом
х и Х — разные переменные

Ввод математических констант

Обозначение Название Смысл Значение
piЧисло ПиОтношение длины окружности к её диаметру3,141592653589…
eЧисло ЭйлераОснование натурального логирифма2.718281828459…

Советы по вводу выражений

Лишних скобок не бывает.(-3)

Если в выражении много скобок, то легко запутаться в процессе ввода. Поэтому лучше при вводе открывающей скобки, сразу после неё вводить закрывающую, а содержимое писать внутри.

Пример:
Стадии ввода примера (1 2//3+4 5//6)/((3//5+7//8)*4)
1. ()
2. (1 2//3+4 5//6)/()
3. (1 2//3+4 5//6)/(()*4)
4. (1 2//3+4 5//6)/((3//5+7//8)*4)

Режимы решения

Приложение поддерживает 3 режима решения:
Стандартное решение
Решение “в столбик”
Обыкновенные дроби

Если вам необходимы расписанные в виде столбиков арифметические действия, выбирайте режим “решение в столбик”, если решение вашего примера подразумевает использование обыкновенных, а не десятичных дробей, выбирайте режим “обыкновенные дроби”, в остальных случаях вам подойдёт режим стандартного решения.

Работа с интерфейсом программы

Описание интерфейса
Структура результата решения, вложенности

Описание частей решения
Решение состоит из 6 основных частей:
Выражение — сам введенный пример
Ответ — результат упрощений без потери точности.
Решение по действиям — список упрощений, совершенных во время решения
Решение по шагам — пошаговое изменение выражения под влиянием упрощений.
Приведение к окончательному ответу. Если ответ можно упростить путём действий с потерей точности (результатом которого является иррациональная (бесконечная) дробь, которую придется округлить, что и является этой потерей точности), то это будет произведено в данной секции решения, которая состоит из подразделов:
Окончательный ответ
Приведение по действиям
Приведение по шагам
Решение уравнения — Решение выражения как уравнения (только для выражений, содержащих знак равенства)

Вложенности
В отличие от предыдущей версии, в этой решение не статично, а представляет собой динамический спискок картинок, каждый элемент которого может содержать в себе другой подсписок картинок, каждый элемент которого может содержать в себе другой подсписок… Максимальный уровень вложенности не ограничен.3
5!!

В первом подэлементе будет содержаться выражение, показывающее механизм данного действия, в последующих — его выполнение.

Подробная информация по выполненному действию: столбики для арифметических операций. Запланировано: подробная информация о действиях с обыкновенными дробями, многочленами.

Содержащий подсписок элемент обозначен специальной пиктограммой в левой части:

Элемент, выведенные подэлементы которого можно свернуть, обозначен другой пиктограммой:

При наведении на элемент, который можно свернуть или развернуть, изменяется курсор. Сворачивание или разворачивание происходит по клику. Иерархия элементов отображена с помощью древа вложенностей, нарисованного черным пунктиром.

Охваченные разделы математики

Действия с натуральными числами
Действия с десятичными, обыкновенными и смешанными дробями
Упрощение выражений, действия с многочленами (умножение, деление, приведение подобных членов…)
Решение линейных и квадратных уравнений

Деление простых дробей на целое число. Дроби. Умножение и деление дробей

С дробями можно выполнять все действия, в том числе и деление. Данная статья показывает деление обыкновенных дробей. Будут даны определения, рассмотрены примеры. Подробно остановимся на делении дробей на натуральные числа и наоборот. Будет рассмотрено деление обыкновенной дроби на смешанное число.

Деление обыкновенных дробей

Деления является обратным умножению. При делении неизвестный множитель находится при известном произведении и другого множителя, где и сохраняется его данный смысл с обыкновенными дробями.

Если необходимо произвести деление обыкновенной дроби a b на c d , тогда для определения такого числа нужно произвести умножение на делитель c d , это даст в итоге делимое a b . Получим число и запишем его a b · d c , где d c является обратным c d числу. Равенства можно записать при помощи свойств умножения, а именно: a b · d c · c d = a b · d c · c d = a b · 1 = a b , где выражение a b · d c является частным от деления a b на c d .

Отсюда получим и сформулируем правило деления обыкновенных дробей:

Определение 1

Чтобы разделить обыкновенную дробь a b на c d , необходимо делимое умножить на число, обратное делителю.

Запишем правило в виде выражения: a b: c d = a b · d c

Правила деления сводятся к умножению. Чтобы придерживаться его, нужно хорошо разбираться в выполнении умножения обыкновенных дробей.

Перейдем к рассмотрению деления обыкновенных дробей.

Пример 1

Выполнить деление 9 7 на 5 3 . Результат записать в виде дроби.

Решение

Число 5 3 – это обратная дробь 3 5 . Необходимо использовать правило деления обыкновенных дробей. Это выражение запишем так: 9 7: 5 3 = 9 7 · 3 5 = 9 · 3 7 · 5 = 27 35 .

Ответ: 9 7: 5 3 = 27 35 .

При сокращении дробей следует выделять целую часть, если числитель больше знаменателя.

Пример 2

Разделить 8 15: 24 65 . Ответ записать в виде дроби.

Решение

Для решения нужно перейти от деления к умножению. Запишем это в такой форме: 8 15: 24 65 = 2 · 2 · 2 · 5 · 13 3 · 5 · 2 · 2 · 2 · 3 = 13 3 · 3 = 13 9

Необходимо произвести сокращение, а это выполняется следующим образом: 8 · 65 15 · 24 = 2 · 2 · 2 · 5 · 13 3 · 5 · 2 · 2 · 2 · 3 = 13 3 · 3 = 13 9

Выделяем целую часть и получаем 13 9 = 1 4 9 .

Ответ: 8 15: 24 65 = 1 4 9 .

Деление необыкновенной дроби на натуральное число

Используем правило деления дроби на натуральное число:чтобы разделить a b на натуральное число n , необходимо умножить только знаменатель на n . Отсюда получим выражение: a b: n = a b · n .

Правило деления является следствием правила умножения. Поэтому представление натурального числа в виде дроби даст равенство такого типа: a b: n = a b: n 1 = a b · 1 n = a b · n .

Рассмотрим данное деление дроби на число.

Пример 3

Произвести деление дроби 16 45 на число 12 .

Решение

Применим правило деления дроби на число. Получим выражение вида 16 45: 12 = 16 45 · 12 .

Произведем сокращение дроби. Получим 16 45 · 12 = 2 · 2 · 2 · 2 (3 · 3 · 5) · (2 · 2 · 3) = 2 · 2 3 · 3 · 3 · 5 = 4 135 .

Ответ: 16 45: 12 = 4 135 .

Деление натурального числа на обыкновенную дробь

Правило деления аналогично правилу деления натурального числа на обыкновенную дробь: чтобы разделить натуральное число n на обыкновенную a b , необходимо произвести умножение числа n на обратное дроби a b .

Исходя из правила, имеем n: a b = n · b a , а благодаря правилу умножения натурального числа на обыкновенную дробь, получим наше выражение в виде n: a b = n · b a . Необходимо рассмотреть данное деление на примере.

Пример 4

Делить 25 на 15 28 .

Решение

Нам необходимо переходить от деления к умножению. Запишем в виде выражения 25: 15 28 = 25 · 28 15 = 25 · 28 15 . Сократим дробь и получим результат в виде дроби 46 2 3 .

Ответ: 25: 15 28 = 46 2 3 .

Деление обыкновенной дроби на смешанное число

При делении обыкновенной дроби на смешанное числолегко можно свети к делению обыкновенных дробей. Нужно совершить перевод смешанного числа в неправильную дробь.

Пример 5

Разделить дробь 35 16 на 3 1 8 .

Решение

Так как 3 1 8 — смешанное число, представим его в виде неправильной дроби. Тогда получим 3 1 8 = 3 · 8 + 1 8 = 25 8 . Теперь произведем деление дробей. Получим 35 16: 3 1 8 = 35 16: 25 8 = 35 16 · 8 25 = 35 · 8 16 · 25 = 5 · 7 · 2 · 2 · 2 2 · 2 · 2 · 2 · (5 · 5) = 7 10

Ответ: 35 16: 3 1 8 = 7 10 .

Деление смешанного числа производится таким же образом, как и обыкновенных.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Обыкновенные дробные числа впервые встречают школьников в 5 классе и сопровождают их на протяжении всей жизни, так как в быту зачастую требуется рассматривать или использовать какой-то объект не целиком, а отдельными кусками. Начало изучения этой темы — доли. Доли — это равные части , на которые разделен тот или иной предмет. Ведь не всегда получается выразить, допустим, длину или цену товара целым числом, следует принять во внимание части или доли какой-либо меры. Образованное от глагола «дробить» — разделять на части, и имея арабские корни, в VIII веке возникло само слово «дробь» в русском языке.

Дробные выражения продолжительное время считали самым сложным разделом математики. В XVII веке, при появлении первоучебников по математике, их называли «ломаные числа», что очень сложно отображалось в понимании людей.

Современному виду простых дробных остатков, части которых разделены именно горизонтальной чертой, впервые поспособствовал Фибоначчи — Леонардо Пизанский. Его труды датированы в 1202 году. Но цель этой статьи — просто и понятно объяснить читателю, как происходит умножение смешанных дробей с разными знаменателями.

Умножение дробей с разными знаменателями

Изначально стоит определить разновидности дробей :

  • правильные;
  • неправильные;
  • смешанные.

Далее нужно вспомнить, как происходит умножение дробных чисел с одинаковыми знаменателями. Само правило этого процесса несложно сформулировать самостоятельно: результатом умножения простых дробей с одинаковыми знаменателями является дробное выражение, числитель которой есть произведение числителей, а знаменатель — произведение знаменателей данных дробей. То есть, по сути, новый знаменатель есть квадрат одного из существующих изначально.

При умножении простых дробей с разными знаменателями для двух и более множителей правило не меняется:

a/ b * c/ d = a*c / b*d.

Единственное отличие в том, что образованное число под дробной чертой будет произведением разных чисел и, естественно, квадратом одного числового выражения его назвать невозможно.

Стоит рассмотреть умножение дробей с разными знаменателями на примерах:

  • 8/ 9 * 6/ 7 = 8*6 / 9*7 = 48/ 63 = 16/2 1 ;
  • 4/ 6 * 3/ 7 = 2/ 3 * 3/7 2*3 / 3*7 = 6/ 21 .

В примерах применяются способы сокращения дробных выражений. Можно сокращать только числа числителя с числами знаменателя, рядом стоящие множители над дробной чертой или под ней сокращать нельзя.

Наряду с простыми дробными числами, существует понятие смешанных дробей. Смешанное число состоит из целого числа и дробной части, то есть является суммой этих чисел:

1 4/ 11 =1 + 4/ 11.

Как происходит перемножение

Предлагается несколько примеров для рассмотрения.

2 1/ 2 * 7 3/ 5 = 2 + 1/ 2 * 7 + 3/ 5 = 2*7 + 2* 3/ 5 + 1/ 2 * 7 + 1/ 2 * 3/ 5 = 14 + 6/5 + 7/ 2 + 3/ 10 = 14 + 12/ 10 + 35/ 10 + 3/ 10 = 14 + 50/ 10 = 14 + 5=19.

В примере используется умножение числа на обыкновенную дробную часть , записать правило для этого действия можно формулой:

a * b/ c = a*b / c.

По сути, такое произведение есть сумма одинаковых дробных остатков, а количество слагаемых указывает это натуральное число. Частный случай:

4 * 12/ 15 = 12/ 15 + 12/ 15 + 12/ 15 + 12/ 15 = 48/ 15 = 3 1/ 5.

Существует еще один вариант решения умножения числа на дробный остаток. Стоит просто разделить знаменатель на это число:

d * e/ f = e/ f: d.

Этим приемом полезно пользоваться, когда знаменатель делится на натуральное число без остатка или, как говорится, нацело.

Перевести смешанные числа в неправильные дроби и получить произведение ранее описанным способом:

1 2/ 3 * 4 1/ 5 = 5/ 3 * 21/ 5 = 5*21 / 3*5 =7.

В этом примере участвует способ представления смешанной дроби в неправильную, его также можно представить в виде общей формулы:

a b c = a * b + c / c, где знаменатель новой дроби образуется при умножении целой части со знаменателем и при сложении его с числителем исходного дробного остатка, а знаменатель остается прежним.

Этот процесс работает и в обратную сторону. Для выделения целой части и дробного остатка нужно поделить числитель неправильной дроби на ее знаменатель «уголком».

Умножение неправильных дробей производят общепринятым способом. Когда запись идет под единой дробной чертой, по мере необходимости нужно сделать сокращение дробей, чтобы уменьшить таким методом числа и проще посчитать результат.

В интернете существует множество помощников, чтобы решать даже сложные математические задачи в различных вариациях программ. Достаточное количество таких сервисов предлагают свою помощь при счете умножения дробей с разными числами в знаменателях — так называемые онлайн-калькуляторы для расчета дробей. Они способны не только умножить, но и произвести все остальные простейшие арифметические операции с обыкновенными дробями и смешанными числами. Работать с ним несложно, на странице сайта заполняются соответствующие поля, выбирается знак математического действия и нажимается «вычислить». Программа считает автоматически.

Тема арифметических действий с дробными числами актуальна на всем протяжении обучения школьников среднего и старшего звена. В старших классах рассматривают уже не простейшие виды, а целые дробные выражения , но знания правил по преобразованию и расчетам, полученные ранее, применяются в первозданном виде. Хорошо усвоенные базовые знания дают полную уверенность в удачном решении наиболее сложных задач.

В заключение имеет смысл привести слова Льва Николаевича Толстого, который писал: «Человек есть дробь. Увеличить своего числителя — свои достоинства, — не во власти человека, но всякий может уменьшить своего знаменателя — своё мнение о самом себе, и этим уменьшением приблизиться к своему совершенству».

Содержание урока

Сложение дробей с одинаковыми знаменателями

Сложение дробей бывает двух видов:

  1. Сложение дробей с одинаковыми знаменателями
  2. Сложение дробей с разными знаменателями

Сначала изучим сложение дробей с одинаковыми знаменателями. Тут всё просто. Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменения. Например, сложим дроби и . Складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если к пиццы прибавить пиццы, то получится пиццы:

Пример 2. Сложить дроби и .

В ответе получилась неправильная дробь . Если наступает конец задачи, то от неправильных дробей принято избавляться. Чтобы избавится от неправильной дроби, нужно выделить в ней целую часть. В нашем случае целая часть выделяется легко — два разделить на два равно единице:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на две части. Если к пиццы прибавить еще пиццы, то получится одна целая пицца:

Пример 3 . Сложить дроби и .

Опять же складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если к пиццы прибавить ещё пиццы, то получится пиццы:

Пример 4. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Числители необходимо сложить, а знаменатель оставить без изменения:

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы и ещё прибавить пиццы, то получится 1 целая и ещё пиццы.

Как видите в сложении дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы сложить дроби с одинаковыми знаменателя, нужно сложить их числители, а знаменатель оставить без изменения;

Сложение дробей с разными знаменателями

Теперь научимся складывать дроби с разными знаменателями. Когда складывают дроби, знаменатели этих дробей должны быть одинаковыми. Но одинаковыми они бывают не всегда.

Например, дроби и сложить можно, поскольку у них одинаковые знаменатели.

А вот дроби и сразу сложить нельзя, поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Существует несколько способов приведения дробей к одинаковому знаменателю. Сегодня мы рассмотрим только один из них, поскольку остальные способы могут показаться сложными для начинающего.

Суть этого способа заключается в том, что сначала ищется (НОК) знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель. Аналогично поступают и со второй дробью — НОК делят на знаменатель второй дроби и получают второй дополнительный множитель.

Затем числители и знаменатели дробей умножаются на свои дополнительные множители. В результате этих действий, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем.

Пример 1 . Сложим дроби и

В первую очередь находим наименьшее общее кратное знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 2. Наименьшее общее кратное этих чисел равно 6

НОК (2 и 3) = 6

Теперь возвращаемся к дробям и . Сначала разделим НОК на знаменатель первой дроби и получим первый дополнительный множитель. НОК это число 6, а знаменатель первой дроби это число 3. Делим 6 на 3, получаем 2.

Полученное число 2 это первый дополнительный множитель. Записываем его к первой дроби. Для этого делаем небольшую косую линию над дробью и записываем над ней найденный дополнительный множитель:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби и получаем второй дополнительный множитель. НОК это число 6, а знаменатель второй дроби — число 2. Делим 6 на 2, получаем 3.

Полученное число 3 это второй дополнительный множитель. Записываем его ко второй дроби. Опять же делаем небольшую косую линию над второй дробью и записываем над ней найденный дополнительный множитель:

Теперь у нас всё готово для сложения. Осталось умножить числители и знаменатели дробей на свои дополнительные множители:

Посмотрите внимательно к чему мы пришли. Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Таким образом, пример завершается. К прибавить получается .

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы, то получится одна целая пицца и еще одна шестая пиццы:

Приведение дробей к одинаковому (общему) знаменателю также можно изобразить с помощью рисунка. Приведя дроби и к общему знаменателю, мы получили дроби и . Эти две дроби будут изображаться теми же кусками пицц. Различие будет лишь в том, что в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю).

Первый рисунок изображает дробь (четыре кусочка из шести), а второй рисунок изображает дробь (три кусочка из шести). Сложив эти кусочки мы получаем (семь кусочков из шести). Эта дробь неправильная, поэтому мы выделили в ней целую часть. В результате получили (одну целую пиццу и еще одну шестую пиццы).

Отметим, что мы с вами расписали данный пример слишком подробно. В учебных заведениях не принято писать так развёрнуто. Нужно уметь быстро находить НОК обоих знаменателей и дополнительные множители к ним, а также быстро умножать найденные дополнительные множители на свои числители и знаменатели. Находясь в школе, данный пример нам пришлось бы записать следующим образом:

Но есть и обратная сторона медали. Если на первых этапах изучения математики не делать подробных записей, то начинают появляться вопросы рода «а откуда вон та цифра?», «почему дроби вдруг превращаются совсем в другие дроби? «.

Чтобы легче было складывать дроби с разными знаменателями, можно воспользоваться следующей пошаговой инструкцией:

  1. Найти НОК знаменателей дробей;
  2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби;
  3. Умножить числители и знаменатели дробей на свои дополнительные множители;
  4. Сложить дроби, у которых одинаковые знаменатели;
  5. Если в ответе получилась неправильная дробь, то выделить её целую часть;

Пример 2. Найти значение выражения .

Воспользуемся инструкцией, которая приведена выше.

Шаг 1. Найти НОК знаменателей дробей

Находим НОК знаменателей обеих дробей. Знаменатели дробей это числа 2, 3 и 4

Шаг 2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби

Делим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби это число 2. Делим 12 на 2, получаем 6. Получили первый дополнительный множитель 6. Записываем его над первой дробью:

Теперь делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби это число 3. Делим 12 на 3, получаем 4. Получили второй дополнительный множитель 4. Записываем его над второй дробью:

Теперь делим НОК на знаменатель третьей дроби. НОК это число 12, а знаменатель третьей дроби это число 4. Делим 12 на 4, получаем 3. Получили третий дополнительный множитель 3. Записываем его над третьей дробью:

Шаг 3. Умножить числители и знаменатели дробей на свои дополнительные множители

Умножаем числители и знаменатели на свои дополнительные множители:

Шаг 4. Сложить дроби у которых одинаковые знаменатели

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби, у которых одинаковые (общие) знаменатели. Осталось сложить эти дроби. Складываем:

Сложение не поместилось на одной строке, поэтому мы перенесли оставшееся выражение на следующую строку. Это допускается в математике. Когда выражение не помещается на одну строку, его переносят на следующую строку, при этом надо обязательно поставить знак равенства (=) на конце первой строки и в начале новой строки. Знак равенства на второй строке говорит о том, что это продолжение выражения, которое было на первой строке.

Шаг 5. Если в ответе получилась неправильная дробь, то выделить в ней целую часть

У нас в ответе получилась неправильная дробь. Мы должны выделить у неё целую часть. Выделяем:

Получили ответ

Вычитание дробей с одинаковыми знаменателями

Вычитание дробей бывает двух видов:

  1. Вычитание дробей с одинаковыми знаменателями
  2. Вычитание дробей с разными знаменателями

Сначала изучим вычитание дробей с одинаковыми знаменателями. Тут всё просто. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить прежним.

Например, найдём значение выражения . Чтобы решить этот пример, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения. Так и сделаем:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 2. Найти значение выражения .

Опять же из числителя первой дроби вычитаем числитель второй дроби, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 3. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Из числителя первой дроби нужно вычесть числители остальных дробей:

Как видите в вычитании дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения;
  2. Если в ответе получилась неправильная дробь, то нужно выделить в ней целую часть.

Вычитание дробей с разными знаменателями

Например, от дроби можно вычесть дробь , поскольку у этих дробей одинаковые знаменатели. А вот от дроби нельзя вычесть дробь , поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Общий знаменатель находят по тому же принципу, которым мы пользовались при сложении дробей с разными знаменателями. В первую очередь находят НОК знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель, который записывается над первой дробью. Аналогично НОК делят на знаменатель второй дроби и получают второй дополнительный множитель, который записывается над второй дробью.

Затем дроби умножаются на свои дополнительные множители. В результате этих операций, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем.

Пример 1. Найти значение выражения:

У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

Сначала находим НОК знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 4. Наименьшее общее кратное этих чисел равно 12

НОК (3 и 4) = 12

Теперь возвращаемся к дробям и

Найдём дополнительный множитель для первой дроби. Для этого разделим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби — число 3. Делим 12 на 3, получаем 4. Записываем четвёрку над первой дробью:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби — число 4. Делим 12 на 4, получаем 3. Записываем тройку над второй дробью:

Теперь у нас всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Получили ответ

Попробуем изобразить наше решение с помощью рисунка. Если от пиццы отрезать пиццы, то получится пиццы

Это подробная версия решения. Находясь в школе, нам пришлось бы решить этот пример покороче. Выглядело бы такое решение следующим образом:

Приведение дробей и к общему знаменателю также может быть изображено с помощью рисунка. Приведя эти дроби к общему знаменателю, мы получили дроби и . Эти дроби будут изображаться теми же кусочками пицц, но в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю):

Первый рисунок изображает дробь (восемь кусочков из двенадцати), а второй рисунок — дробь (три кусочка из двенадцати). Отрезав от восьми кусочков три кусочка мы получаем пять кусочков из двенадцати. Дробь и описывает эти пять кусочков.

Пример 2. Найти значение выражения

У этих дробей разные знаменатели, поэтому сначала нужно привести их к одинаковому (общему) знаменателю.

Найдём НОК знаменателей этих дробей.

Знаменатели дробей это числа 10, 3 и 5. Наименьшее общее кратное этих чисел равно 30

НОК (10, 3, 5) = 30

Теперь находим дополнительные множители для каждой дроби. Для этого разделим НОК на знаменатель каждой дроби.

Найдём дополнительный множитель для первой дроби. НОК это число 30, а знаменатель первой дроби — число 10. Делим 30 на 10, получаем первый дополнительный множитель 3. Записываем его над первой дробью:

Теперь находим дополнительный множитель для второй дроби. Разделим НОК на знаменатель второй дроби. НОК это число 30, а знаменатель второй дроби — число 3. Делим 30 на 3, получаем второй дополнительный множитель 10. Записываем его над второй дробью:

Теперь находим дополнительный множитель для третьей дроби. Разделим НОК на знаменатель третьей дроби. НОК это число 30, а знаменатель третьей дроби — число 5. Делим 30 на 5, получаем третий дополнительный множитель 6. Записываем его над третьей дробью:

Теперь всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые (общие) знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример.

Продолжение примера не поместится на одной строке, поэтому переносим продолжение на следующую строку. Не забываем про знак равенства (=) на новой строке:

В ответе получилась правильная дробь, и вроде бы нас всё устраивает, но она слишком громоздка и некрасива. Надо бы сделать её проще. А что можно сделать? Можно сократить эту дробь.

Чтобы сократить дробь , нужно разделить её числитель и знаменатель на (НОД) чисел 20 и 30.

Итак, находим НОД чисел 20 и 30:

Теперь возвращаемся к нашему примеру и делим числитель и знаменатель дроби на найденный НОД, то есть на 10

Получили ответ

Умножение дроби на число

Чтобы умножить дробь на число, нужно числитель данной дроби умножить на это число, а знаменатель оставить прежним.

Пример 1 . Умножить дробь на число 1 .

Умножим числитель дроби на число 1

Запись можно понимать, как взять половину 1 раз. К примеру, если пиццы взять 1 раз, то получится пиццы

Из законов умножения мы знаем, что если множимое и множитель поменять местами, то произведение не изменится. Если выражение , записать как , то произведение по прежнему будет равно . Опять же срабатывает правило перемножения целого числа и дроби:

Эту запись можно понимать, как взятие половины от единицы. К примеру, если имеется 1 целая пицца и мы возьмем от неё половину, то у нас окажется пиццы:

Пример 2 . Найти значение выражения

Умножим числитель дроби на 4

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Выражение можно понимать, как взятие двух четвертей 4 раза. К примеру, если пиццы взять 4 раза, то получится две целые пиццы

А если поменять множимое и множитель местами, то получим выражение . Оно тоже будет равно 2. Это выражение можно понимать, как взятие двух пицц от четырех целых пицц:

Умножение дробей

Чтобы перемножить дроби, нужно перемножить их числители и знаменатели. Если в ответе получится неправильная дробь, нужно выделить в ней целую часть.

Пример 1. Найти значение выражения .

Получили ответ . Желательно сократить данную дробь. Дробь можно сократить на 2. Тогда окончательное решение примет следующий вид:

Выражение можно понимать, как взятие пиццы от половины пиццы. Допустим, у нас есть половина пиццы:

Как взять от этой половины две третьих? Сначала нужно поделить эту половину на три равные части:

И взять от этих трех кусочков два:

У нас получится пиццы. Вспомните, как выглядит пицца, разделенная на три части:

Один кусок от этой пиццы и взятые нами два кусочка будут иметь одинаковые размеры:

Другими словами, речь идет об одном и том же размере пиццы. Поэтому значение выражения равно

Пример 2 . Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Пример 3. Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась правильная дробь, но будет хорошо, если её сократить. Чтобы сократить эту дробь, нужно числитель и знаменатель данной дроби разделить на наибольший общий делитель (НОД) чисел 105 и 450.

Итак, найдём НОД чисел 105 и 450:

Теперь делим числитель и знаменатель нашего ответа на НОД, который мы сейчас нашли, то есть на 15

Представление целого числа в виде дроби

Любое целое число можно представить в виде дроби. Например, число 5 можно представить как . От этого пятёрка своего значения не поменяет, поскольку выражение означает «число пять разделить на единицу», а это, как известно равно пятёрке:

Обратные числа

Сейчас мы познакомимся с очень интересной темой в математике. Она называется «обратные числа».

Определение. Обратным к числу a называется число, которое при умножении на a даёт единицу.

Давайте подставим в это определение вместо переменной a число 5 и попробуем прочитать определение:

Обратным к числу 5 называется число, которое при умножении на 5 даёт единицу.

Можно ли найти такое число, которое при умножении на 5, даёт единицу? Оказывается можно. Представим пятёрку в виде дроби:

Затем умножить эту дробь на саму себя, только поменяем местами числитель и знаменатель. Другими словами, умножим дробь на саму себя, только перевёрнутую:

Что получится в результате этого? Если мы продолжим решать этот пример, то получим единицу:

Значит обратным к числу 5, является число , поскольку при умножении 5 на получается единица.

Обратное число можно найти также для любого другого целого числа.

Найти обратное число можно также для любой другой дроби. Для этого достаточно перевернуть её.

Деление дроби на число

Допустим, у нас имеется половина пиццы:

Разделим её поровну на двоих. Сколько пиццы достанется каждому?

Видно, что после разделения половины пиццы получилось два равных кусочка, каждый из которых составляет пиццы. Значит каждому достанется по пиццы.

Деление дробей выполняется с помощью обратных чисел. Обратные числа позволяют заменить деление умножением.

Чтобы разделить дробь на число, нужно эту дробь умножить на число, обратное делителю.

Пользуясь этим правилом, запишем деление нашей половины пиццы на две части.

Итак, требуется разделить дробь на число 2 . Здесь делимым является дробь , а делителем число 2.

Чтобы разделить дробь на число 2, нужно эту дробь умножить на число, обратное делителю 2. Обратное делителю 2 это дробь . Значит нужно умножить на

Для решения различных заданий из курса математики, физики приходится производить деление дробей. Это сделать очень легко, если знать определенные правила выполнения этого математического действия.

Прежде чем перейти к формулированию правило том, как делить дроби, давайте вспомним некоторые математические термины:

  1. Верхняя часть дроби называется числителем, а нижняя – знаменателем.
  2. При делении числа называются так: делимое: делитель = частное

Как делить дроби: простые дроби

Для выполнения деления двух простых дробей следует умножить делимое на дробь, обратную делителю. Эту дробь по-другому называют еще перевернутой, потому что она получается в результате замены местами числителя и знаменателя. Например:

3/77: 1/11 = 3 /77 * 11 /1 = 3/7

Как делить дроби: смешанные дроби

Если нам предстоит разделить смешанные дроби, то здесь тоже все достаточно просто и понятно. Сначала переводим смешанную дробь в обычную неправильную дробь. Для этого умножаем знаменатель такой дроби на целое число и числитель прибавляем к полученному произведению. В итоге мы получили новый числитель смешанной дроби, а знаменатель ее останется без изменения. Дальше деление дробей будет осуществляться точно так же, как и деление простых дробей. Например:

10 2/3: 4/15 = 32/3: 4/15 = 32/3 * 15 /4 = 40/1 = 40

Как делить дробь на число

Для того чтобы разделить простую дробь на число, последнее следует написать в виде дроби (неправильной). Это сделать очень легко: на месте числителя пишется это число, а знаменатель такой дроби равен единице. Дальше деление выполняется обычным способом. Рассмотрим это на примере:

5/11: 7 = 5/11: 7/1 = 5/11 * 1/7 = 5/77

Как делить десятичные дроби

Нередко взрослый человек испытывает затруднения при необходимости без помощи калькулятора разделить целое число или десятичную дробь на десятичную дробь.

Итак, чтобы выполнить деление десятичных дробей, нужно в делителе просто зачеркнуть запятую и перестать обращать на нее внимание. В делимом запятую нужно передвинуть вправо ровно на столько знаков, сколько было в дробной части делителя, при необходимости дописывая нули. И дальше производят обычное деление на целое число. Чтобы это стало более понятно, приведем следующий пример.

) и знаменатель на знаменатель (получим знаменатель произведения).

Формула умножения дробей:

Например:

Перед тем, как приступить к умножению числителей и знаменателей, необходимо проверить на возможность сокращения дроби . Если получится сократить дробь, то вам легче будет дальше производить расчеты.

Деление обыкновенной дроби на дробь.

Деление дробей с участием натурального числа.

Это не так страшно, как кажется. Как и в случае со сложением , переводим целое число в дробь с единицей в знаменателе. Например:

Умножение смешанных дробей.

Правила умножения дробей (смешанных):

  • преобразовываем смешанные дроби в неправильные;
  • перемножаем числители и знаменатели дробей;
  • сокращаем дробь;
  • если получили неправильную дробь, то преобразовываем неправильную дробь в смешанную.

Обратите внимание! Чтобы умножить смешанную дробь на другую смешанную дробь, нужно, для начала, привести их к виду неправильных дробей, а далее умножить по правилу умножения обыкновенных дробей.

Второй способ умножения дроби на натуральное число.

Бывает более удобно использовать второй способ умножения обыкновенной дроби на число.

Обратите внимание! Для умножения дроби на натуральное число необходимо знаменатель дроби разделить на это число, а числитель оставить без изменения.

Из, приведенного выше, примера понятно, что этот вариант удобней для использования, когда знаменатель дроби делится без остатка на натуральное число.

Многоэтажные дроби.

В старших классах зачастую встречаются трехэтажные (или больше) дроби. Пример:

Чтобы привести такую дробь к привычному виду, используют деление через 2 точки:

Обратите внимание! В делении дробей очень важен порядок деления. Будьте внимательны, здесь легко запутаться.

Обратите внимание, например:

При делении единицы на любую дробь, результатом будет таже самая дробь, только перевернутая:

Практические советы при умножении и делении дробей:

1. Самым важным в работе с дробными выражениями является аккуратность и внимательность. Все вычисления делайте внимательно и аккуратно, сосредоточенно и чётко. Лучше запишите несколько лишних строчек в черновике, чем запутаться в расчетах в уме.

2. В заданиях с разными видами дробей — переходите к виду обыкновенных дробей.

3. Все дроби сокращаем до тех пор, пока сокращать уже будет невозможно.

4. Многоэтажные дробные выражения приводим в вид обыкновенных, пользуясь делением через 2 точки.

5. Единицу на дробь делим в уме, просто переворачивая дробь.

Решение обыкновенных дробей. Правила арифметических действий над обыкновенными дробям

Инструкция

Сначала вспомните что дробь – это всего лишь условная запись деления одного числа на другое. В от сложения и умножения, при делении двух целых чисел не всегда получается целое число. Вот и называть эти два «делящихся» числа . То число, которое делят, числителем, а то, на которое делят — знаменателем.

Чтобы записать дробь, напишите сначала ее числитель, затем проведите под этим числом горизонтальную черту, а под чертой напишите знаменатель. Горизонтальная , разделяющая числитель и знаменатель, называется дробной чертой. Иногда ее изображают в виде наклонной черты «/» или «∕». При этом, числитель записывается слева от черты, а знаменатель справа. Так, например, дробь «две третьих» запишется как 2/3. Для наглядности числитель обычно пишут в верхней части строки, а знаменатель — в нижней, то есть вместо 2/3 можно встретить: ⅔.

Если числитель дроби больше ее знаменателя, то такую «неправильную» дробь обычно записывают в виде «смешанной» дроби. Чтобы получить из неправильной дроби смешанную, просто разделите числитель на знаменатель и запишите полученное частное. После чего поместите остаток от деления в числитель дроби и запишите эту дробь справа от частного (знаменатель не трогайте). Например, 7/3 = 2⅓.

Чтобы сложить две дроби с одинаковым знаменателем, просто сложите их числители (знаменатели не трогайте). Например, 2/7 + 3/7 = (2+3)/7 = 5/7. Аналогично производите и вычитание двух дробей (числители при этом вычитаются). Например, 6/7 – 2/7 = (6-2)/7 = 4/7.

Чтобы сложить две дроби с разными знаменателями, умножьте числитель и знаменатель первой дроби на знаменатель второй, а числитель и знаменатель второй дроби – на знаменатель первой. В итоге у вас получится сумма двух дробей с одинаковыми знаменателями, сложение которых описано в предыдущем пункте.

Например, 3/4 + 2/3 = (3*3)/(4*3) + (2*4)/(3*4) = 9/12 + 8/12 = (9+8)/12 = 17/12 = 1 5/12.

Если знаменатели дробей имеют общие делители, то есть делятся на одно и то же число, выберите в качестве общего знаменателя наименьшее число, делящееся на первый и второй знаменатель одновременно. Так, например, если первый знаменатель равен 6, а второй 8, то в качестве общего знаменателя возьмите не их произведение (48), а число 24, которое делится как на 6, так и на 8. Числители дробей при этом умножаются на частное от деления общего знаменателя на знаменатель каждой дроби. Например, для знаменателя 6 таким числом будет 4 – (24/6), а для знаменателя 8 – 3 (24/8). Более наглядно этот процесс виден на конкретном примере:

5/6 + 3/8 = (5*4)/24 + (3*3)/24 = 20/24 + 9/24 = 29/24 = 1 5/24.

Вычитание дробей с разными знаменателями производится совершенно аналогично.

Действия с дробями.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

Итак, что из себя представляют дроби, виды дробей, преобразования — мы вспомнили. Займёмся главным вопросом.

Что можно делать с дробями? Да всё то, что и с обычными числами. Складывать, вычитать, умножать, делить.

Все эти действия с десятичными дробями ничем не отличаются от действий с целыми числами. Собственно, этим они и хороши, десятичные. Единственно, запятую правильно поставить надо.

Смешанные числа , как я уже говорил, малопригодны для большинства действий. Их всё равно надо переводить в обыкновенные дроби.

А вот действия с обыкновенными дробями похитрее будут. И гораздо важнее! Напомню: все действия с дробными выражениями с буковками, синусами, неизвестными и прочая и прочая ничем не отличаются от действий с обыкновенными дробями ! Действия с обыкновенными дробями — это основа для всей алгебры. Именно по этой причине мы очень подробно разберём здесь всю эту арифметику.

Сложение и вычитание дробей.

Сложить (отнять) дроби с одинаковыми знаменателями каждый сможет (очень надеюсь!). Ну уж совсем забывчивым напомню: при сложении (вычитании) знаменатель не меняется. Числители складываются (вычитаются) и дают числитель результата. Типа:

Короче, в общем виде:

А если знаменатели разные? Тогда, используя основное свойство дроби (вот оно и опять пригодилось!), делаем знаменатели одинаковыми! Например:

Здесь нам из дроби 2/5 пришлось сделать дробь 4/10. Исключительно с целью сделать знаменатели одинаковыми. Замечу, на всякий случай, что 2/5 и 4/10 это одна и та же дробь ! Только 2/5 нам неудобно, а 4/10 очень даже ничего.

Кстати, в этом суть решений любых заданий по математике. Когда мы из неудобного выражения делаем то же самое, но уже удобное для решения .

Ещё пример:

Ситуация аналогичная. Здесь мы из 16 делаем 48. Простым умножением на 3. Это всё понятно. Но вот нам попалось что-нибудь типа:

Как быть?! Из семёрки девятку трудно сделать! Но мы умные, мы правила знаем! Преобразуем каждую дробь так, чтобы знаменатели стали одинаковыми. Это называется «приведём к общему знаменателю»:

Во как! Откуда же я узнал про 63? Очень просто! 63 это число, которое нацело делится на 7 и 9 одновременно. Такое число всегда можно получить перемножением знаменателей. Если мы какое-то число умножили на 7, к примеру, то результат уж точно на 7 делиться будет!

Если надо сложить (вычесть) несколько дробей, нет нужды делать это попарно, по шагам. Просто надо найти знаменатель, общий для всех дробей, и привести каждую дробь к этому самому знаменателю. Например:

И какой же общий знаменатель будет? Можно, конечно, перемножить 2, 4, 8, и 16. Получим 1024. Кошмар. Проще прикинуть, что число 16 отлично делится и на 2, и на 4, и на 8. Следовательно, из этих чисел легко получить 16. Это число и будет общим знаменателем. 1/2 превратим в 8/16, 3/4 в 12/16, ну и так далее.

Кстати, если за общий знаменатель взять 1024, тоже всё получится, в конце всё посокращается. Только до этого конца не все доберутся, из-за вычислений…

Дорешайте уж пример самостоятельно. Не логарифм какой… Должно получиться 29/16.

Итак, со сложением (вычитанием) дробей ясно, надеюсь? Конечно, проще работать в сокращённом варианте, с дополнительными множителями. Но это удовольствие доступно тем, кто честно трудился в младших классах… И ничего не забыл.

А сейчас мы поделаем те же самые действия, но не с дробями, а с дробными выражениями . Здесь обнаружатся новые грабли, да…

Итак, нам надо сложить два дробных выражения:

Надо сделать знаменатели одинаковыми. Причём только с помощью умножения ! Уж так основное свойство дроби велит. Поэтому я не могу в первой дроби в знаменателе к иксу прибавить единицу. (а вот бы хорошо было!). А вот если перемножить знаменатели, глядишь, всё и срастётся! Так и записываем, черту дроби, сверху пустое место оставим, потом допишем, а снизу пишем произведение знаменателей, чтобы не забыть:

И, конечно, ничего в правой части не перемножаем, скобки не открываем! А теперь, глядя на общий знаменатель правой части, соображаем: чтобы в первой дроби получился знаменатель х(х+1), надо числитель и знаменатель этой дроби умножить на (х+1). А во второй дроби — на х. Получится вот что:

Обратите внимание! Здесь появились скобки! Это и есть те грабли, на которые многие наступают. Не скобки, конечно, а их отсутствие. Скобки появляются потому, что мы умножаем весь числитель и весь знаменатель! А не их отдельные кусочки…

В числителе правой части записываем сумму числителей, всё как в числовых дробях, затем раскрываем скобки в числителе правой части, т.е. перемножаем всё и приводим подобные. Раскрывать скобки в знаменателях, перемножать что-то не нужно! Вообще, в знаменателях (любых) всегда приятнее произведение! Получим:

Вот и получили ответ. Процесс кажется долгим и трудным, но это от практики зависит. Порешаете примеры, привыкните, всё станет просто. Те, кто освоил дроби в положенное время, все эти операции одной левой делают, на автомате!

И ещё одно замечание. Многие лихо расправляются с дробями, но зависают на примерах с целыми числами. Типа: 2 + 1/2 + 3/4= ? Куда пристегнуть двойку? Никуда не надо пристёгивать, надо из двойки дробь сделать. Это не просто, а очень просто! 2=2/1. Вот так. Любое целое число можно записать в виде дроби. В числителе — само число, в знаменателе — единица. 7 это 7/1, 3 это 3/1 и так далее. С буквами — то же самое. (а+в) = (а+в)/1, х=х/1 и т.д. А дальше работаем с этим дробями по всем правилам.

Ну, по сложению — вычитанию дробей знания освежили. Преобразования дробей из одного вида в другой — повторили. Можно и провериться. Порешаем немного?)

Вычислить:

Ответы (в беспорядке):

71/20; 3/5; 17/12; -5/4; 11/6

Умножение/деление дробей — в следующем уроке. Там же и задания на все действия с дробями.

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Умножение и деление дробей.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

Эта операция гораздо приятнее сложения-вычитания ! Потому что проще. Напоминаю: чтобы умножить дробь на дробь, нужно перемножить числители (это будет числитель результата) и знаменатели (это будет знаменатель). То есть:

Например:

Всё предельно просто . И, пожалуйста, не ищите общий знаменатель! Не надо его здесь…

Чтобы разделить дробь на дробь, нужно перевернуть вторую (это важно!) дробь и их перемножить, т.е.:

Например:

Если попалось умножение или деление с целыми числами и дробями — ничего страшного. Как и при сложении, делаем из целого числа дробь с единицей в знаменателе — и вперёд! Например:

В старших классах часто приходится иметь дело с трехэтажными (а то и четырехэтажными!) дробями. Например:

Как эту дробь привести к приличному виду? Да очень просто! Использовать деление через две точки:

Но не забывайте о порядке деления! В отличие от умножения, здесь это очень важно! Конечно, 4:2, или 2:4 мы не спутаем. А вот в трёхэтажной дроби легко ошибиться. Обратите внимание, например:

В первом случае (выражение слева):

Во втором (выражение справа):

Чувствуете разницу? 4 и 1/9!

А чем задается порядок деления? Или скобками, или (как здесь) длиной горизонтальных черточек. Развивайте глазомер. А если нет ни скобок, ни черточек, типа:

то делим-умножаем по порядочку, слева направо !

И еще очень простой и важный приём. В действиях со степенями он вам ох как пригодится! Поделим единицу на любую дробь, например, на 13/15:

Дробь перевернулась! И так бывает всегда. При делении 1 на любую дробь, в результате получаем ту же дробь, только перевернутую.

Вот и все действия с дробями. Вещь достаточно простая, но ошибок даёт более, чем достаточно. Примите к сведению практические советы, и их (ошибок) будет меньше!

Практические советы:

1. Самое главное при работе с дробными выражениями — аккуратность и внимательность! Это не общие слова, не благие пожелания! Это суровая необходимость! Все вычисления на ЕГЭ делайте как полноценное задание, сосредоточенно и чётко. Лучше написать две лишние строчки в черновике, чем накосячить при расчёте в уме.

2. В примерах с разными видами дробей — переходим к обыкновенным дробям.

3. Все дроби сокращаем до упора.

4. Многоэтажные дробные выражения сводим к обыкновенным, используя деление через две точки (следим за порядком деления!).

5. Единицу на дробь делим в уме, просто переворачивая дробь.

Вот вам задания, которые нужно обязательно прорешать. Ответы даны после всех заданий. Используйте материалы этой темы и практические советы. Прикиньте, сколько примеров вы смогли решить правильно. С первого раза! Без калькулятора! И сделайте верные выводы…

Помните – правильный ответ, полученный со второго (тем более – третьего) раза – не считается! Такова суровая жизнь.

Итак, решаем в режиме экзамена ! Это уже подготовка к ЕГЭ, между прочим. Решаем пример, проверяем, решаем следующий. Решили все — проверили снова с первого по последний. И только потом смотрим ответы.

Вычислить:

Порешали?

Ищем ответы, которые совпадают с вашими. Я специально их в беспорядке записал, подальше от соблазна, так сказать… Вот они, ответы, через точку с запятой записаны.

0; 17/22; 3/4; 2/5; 1; 25.

А теперь делаем выводы. Если всё получилось — рад за вас! Элементарные вычисления с дробями — не ваша проблема! Можно заняться более серьёзными вещами. Если нет…

Значит, у вас одна из двух проблем. Или обе сразу.) Нехватка знаний и (или) невнимательность. Но… Это решаемые проблемы.

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

В статье покажем, как решать дроби на простых понятных примерах. Разберемся, что такое дробь и рассмотрим решение дробей !

Понятие дроби вводится в курс математики начиная с 6 класса средней школы.

Дроби имеют вид: ±X/Y, где Y — знаменатель, он сообщает на сколько частей разделили целое, а X — числитель, он сообщает, сколько таких частей взяли. Для наглядности возьмем пример с тортом:

В первом случае торт разрезали поровну и взяли одну половину, т.е. 1/2. Во втором случае торт разрезали на 7 частей, из которых взяли 4 части, т.е. 4/7.

Если часть от деления одного числа на другое не является целым числом, ее записывают в виде дроби.

Например, выражение 4:2 = 2 дает целое число, а вот 4:7 нацело не делится, поэтому такое выражение записывается в виде дроби 4/7.

Иными словами дробь — это выражение, которое обозначает деление двух чисел или выражений, и которое записывается с помощью дробной черты.

Если числитель меньше знаменателя — дробь является правильной, если наоборот — неправильной. В состав дроби может входить целое число.

Например, 5 целых 3/4.

Данная запись означает, что для того, чтобы получить целую 6 не хватает одной части от четырех.

Если вы хотите запомнить, как решать дроби за 6 класс , вам надо понять, что решение дробей , в основном, сводится к понимаю нескольких простых вещей.

  • Дробь по сути это выражение доли. То есть числовое выражение того, какую часть составляет данное значение от одного целого. К примеру дробь 3/5 выражает, что, если мы поделили что то целое на 5 частей и количество долей или частей это этого целого — три.
  • Дробь может быть меньше 1, например 1/2(или по сути половина), тогда она правильная. Если дробь больше 1, к примеру 3/2(три половины или один с половиной), то она неправильная и для упрощения решения, нам лучше выделить целую часть 3/2= 1 целая 1/2.
  • Дроби это такие же числа, как 1, 3, 10, и даже 100, только числа это не целые а дробные. С ними можно выполнять все те же операции, что с числами. Считать дроби не сложнее, и далее на конкретных примерах мы это покажем.

Как решать дроби. Примеры.

К дробям применимы самые разные арифметические операции.

Приведение дроби к общему знаменателю

Например, необходимо сравнить дроби 3/4 и 4/5.

Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей

Наименьший общий знаменатель(4,5) = 20

Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю

Ответ: 15/20

Сложение и вычитание дробей

Если необходимо посчитать сумму двух дробей, их сначала приводят к общему знаменателю, затем складывают числители, при этом знаменатель останется без изменений. Разность дробей считается аналогичным образом, различие лишь в том, что числители вычитаются.

Например, необходимо найти сумму дробей 1/2 и 1/3

Теперь найдем разность дробей 1/2 и 1/4

Умножение и деление дробей

Тут решение дробей несложное, здесь все достаточно просто:

  • Умножение — числители и знаменатели дробей перемножаются между собой;
  • Деление — сперва получаем дробь, обратную второй дроби, т.е. меняем местами ее числитель и знаменатель, после чего полученные дроби перемножаем.

Например:

На этом о том, как решать дроби , всё. Если у вас остались какие то вопросы по решению дробей , что то непонятно, то пишите в комментарии и мы обязательно вам ответим.

Если вы учитель, то возможно скачать презентацию для начальной школы (http://school-box.ru/nachalnaya-shkola/prezentazii-po-matematike.html) будет вам кстати.

Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия — в том же порядке, как и для обычных чисел. А именно:

  1. Сначала выполняется возведение в степень — избавьтесь от всех выражений, содержащих показатели;
  2. Затем — деление и умножение;
  3. Последним шагом выполняется сложение и вычитание.

Разумеется, если в выражении присутствуют скобки, порядок действий изменяется — все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем — деление. Заметим, что 14 = 7 · 2 . Тогда:

Наконец, считаем третий пример. Здесь есть скобки и степень — их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно — знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

Многоэтажные дроби

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

Задача. Переведите многоэтажные дроби в обычные:

В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

В последнем примере перед окончательным умножением дроби были сокращены.

Специфика работы с многоэтажными дробями

В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

  1. В числителе стоит отдельное число 7, а в знаменателе — дробь 12/5;
  2. В числителе стоит дробь 7/12, а в знаменателе — отдельное число 5.

Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно — в несколько раз.

Если следовать этому правилу, то приведенные выше дроби надо записать так:

Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок — пара примеров, где действительно возникают многоэтажные дроби:

Задача. Найдите значения выражений:

Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем — частное.

Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

Действия с обыкновенными дробями. Умножение и деление дробей С 11 все действия с дробями

Содержание урока

Сложение дробей с одинаковыми знаменателями

Сложение дробей бывает двух видов:

  1. Сложение дробей с одинаковыми знаменателями
  2. Сложение дробей с разными знаменателями

Сначала изучим сложение дробей с одинаковыми знаменателями. Тут всё просто. Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменения. Например, сложим дроби и . Складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если к пиццы прибавить пиццы, то получится пиццы:

Пример 2. Сложить дроби и .

В ответе получилась неправильная дробь . Если наступает конец задачи, то от неправильных дробей принято избавляться. Чтобы избавится от неправильной дроби, нужно выделить в ней целую часть. В нашем случае целая часть выделяется легко — два разделить на два равно единице:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на две части. Если к пиццы прибавить еще пиццы, то получится одна целая пицца:

Пример 3 . Сложить дроби и .

Опять же складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если к пиццы прибавить ещё пиццы, то получится пиццы:

Пример 4. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Числители необходимо сложить, а знаменатель оставить без изменения:

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы и ещё прибавить пиццы, то получится 1 целая и ещё пиццы.

Как видите в сложении дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы сложить дроби с одинаковыми знаменателя, нужно сложить их числители, а знаменатель оставить без изменения;

Сложение дробей с разными знаменателями

Теперь научимся складывать дроби с разными знаменателями. Когда складывают дроби, знаменатели этих дробей должны быть одинаковыми. Но одинаковыми они бывают не всегда.

Например, дроби и сложить можно, поскольку у них одинаковые знаменатели.

А вот дроби и сразу сложить нельзя, поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Существует несколько способов приведения дробей к одинаковому знаменателю. Сегодня мы рассмотрим только один из них, поскольку остальные способы могут показаться сложными для начинающего.

Суть этого способа заключается в том, что сначала ищется (НОК) знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель. Аналогично поступают и со второй дробью — НОК делят на знаменатель второй дроби и получают второй дополнительный множитель.

Затем числители и знаменатели дробей умножаются на свои дополнительные множители. В результате этих действий, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем.

Пример 1 . Сложим дроби и

В первую очередь находим наименьшее общее кратное знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 2. Наименьшее общее кратное этих чисел равно 6

НОК (2 и 3) = 6

Теперь возвращаемся к дробям и . Сначала разделим НОК на знаменатель первой дроби и получим первый дополнительный множитель. НОК это число 6, а знаменатель первой дроби это число 3. Делим 6 на 3, получаем 2.

Полученное число 2 это первый дополнительный множитель. Записываем его к первой дроби. Для этого делаем небольшую косую линию над дробью и записываем над ней найденный дополнительный множитель:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби и получаем второй дополнительный множитель. НОК это число 6, а знаменатель второй дроби — число 2. Делим 6 на 2, получаем 3.

Полученное число 3 это второй дополнительный множитель. Записываем его ко второй дроби. Опять же делаем небольшую косую линию над второй дробью и записываем над ней найденный дополнительный множитель:

Теперь у нас всё готово для сложения. Осталось умножить числители и знаменатели дробей на свои дополнительные множители:

Посмотрите внимательно к чему мы пришли. Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Таким образом, пример завершается. К прибавить получается .

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы, то получится одна целая пицца и еще одна шестая пиццы:

Приведение дробей к одинаковому (общему) знаменателю также можно изобразить с помощью рисунка. Приведя дроби и к общему знаменателю, мы получили дроби и . Эти две дроби будут изображаться теми же кусками пицц. Различие будет лишь в том, что в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю).

Первый рисунок изображает дробь (четыре кусочка из шести), а второй рисунок изображает дробь (три кусочка из шести). Сложив эти кусочки мы получаем (семь кусочков из шести). Эта дробь неправильная, поэтому мы выделили в ней целую часть. В результате получили (одну целую пиццу и еще одну шестую пиццы).

Отметим, что мы с вами расписали данный пример слишком подробно. В учебных заведениях не принято писать так развёрнуто. Нужно уметь быстро находить НОК обоих знаменателей и дополнительные множители к ним, а также быстро умножать найденные дополнительные множители на свои числители и знаменатели. Находясь в школе, данный пример нам пришлось бы записать следующим образом:

Но есть и обратная сторона медали. Если на первых этапах изучения математики не делать подробных записей, то начинают появляться вопросы рода «а откуда вон та цифра?», «почему дроби вдруг превращаются совсем в другие дроби? «.

Чтобы легче было складывать дроби с разными знаменателями, можно воспользоваться следующей пошаговой инструкцией:

  1. Найти НОК знаменателей дробей;
  2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби;
  3. Умножить числители и знаменатели дробей на свои дополнительные множители;
  4. Сложить дроби, у которых одинаковые знаменатели;
  5. Если в ответе получилась неправильная дробь, то выделить её целую часть;

Пример 2. Найти значение выражения .

Воспользуемся инструкцией, которая приведена выше.

Шаг 1. Найти НОК знаменателей дробей

Находим НОК знаменателей обеих дробей. Знаменатели дробей это числа 2, 3 и 4

Шаг 2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби

Делим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби это число 2. Делим 12 на 2, получаем 6. Получили первый дополнительный множитель 6. Записываем его над первой дробью:

Теперь делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби это число 3. Делим 12 на 3, получаем 4. Получили второй дополнительный множитель 4. Записываем его над второй дробью:

Теперь делим НОК на знаменатель третьей дроби. НОК это число 12, а знаменатель третьей дроби это число 4. Делим 12 на 4, получаем 3. Получили третий дополнительный множитель 3. Записываем его над третьей дробью:

Шаг 3. Умножить числители и знаменатели дробей на свои дополнительные множители

Умножаем числители и знаменатели на свои дополнительные множители:

Шаг 4. Сложить дроби у которых одинаковые знаменатели

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби, у которых одинаковые (общие) знаменатели. Осталось сложить эти дроби. Складываем:

Сложение не поместилось на одной строке, поэтому мы перенесли оставшееся выражение на следующую строку. Это допускается в математике. Когда выражение не помещается на одну строку, его переносят на следующую строку, при этом надо обязательно поставить знак равенства (=) на конце первой строки и в начале новой строки. Знак равенства на второй строке говорит о том, что это продолжение выражения, которое было на первой строке.

Шаг 5. Если в ответе получилась неправильная дробь, то выделить в ней целую часть

У нас в ответе получилась неправильная дробь. Мы должны выделить у неё целую часть. Выделяем:

Получили ответ

Вычитание дробей с одинаковыми знаменателями

Вычитание дробей бывает двух видов:

  1. Вычитание дробей с одинаковыми знаменателями
  2. Вычитание дробей с разными знаменателями

Сначала изучим вычитание дробей с одинаковыми знаменателями. Тут всё просто. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить прежним.

Например, найдём значение выражения . Чтобы решить этот пример, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения. Так и сделаем:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 2. Найти значение выражения .

Опять же из числителя первой дроби вычитаем числитель второй дроби, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 3. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Из числителя первой дроби нужно вычесть числители остальных дробей:

Как видите в вычитании дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения;
  2. Если в ответе получилась неправильная дробь, то нужно выделить в ней целую часть.

Вычитание дробей с разными знаменателями

Например, от дроби можно вычесть дробь , поскольку у этих дробей одинаковые знаменатели. А вот от дроби нельзя вычесть дробь , поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Общий знаменатель находят по тому же принципу, которым мы пользовались при сложении дробей с разными знаменателями. В первую очередь находят НОК знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель, который записывается над первой дробью. Аналогично НОК делят на знаменатель второй дроби и получают второй дополнительный множитель, который записывается над второй дробью.

Затем дроби умножаются на свои дополнительные множители. В результате этих операций, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем.

Пример 1. Найти значение выражения:

У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

Сначала находим НОК знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 4. Наименьшее общее кратное этих чисел равно 12

НОК (3 и 4) = 12

Теперь возвращаемся к дробям и

Найдём дополнительный множитель для первой дроби. Для этого разделим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби — число 3. Делим 12 на 3, получаем 4. Записываем четвёрку над первой дробью:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби — число 4. Делим 12 на 4, получаем 3. Записываем тройку над второй дробью:

Теперь у нас всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Получили ответ

Попробуем изобразить наше решение с помощью рисунка. Если от пиццы отрезать пиццы, то получится пиццы

Это подробная версия решения. Находясь в школе, нам пришлось бы решить этот пример покороче. Выглядело бы такое решение следующим образом:

Приведение дробей и к общему знаменателю также может быть изображено с помощью рисунка. Приведя эти дроби к общему знаменателю, мы получили дроби и . Эти дроби будут изображаться теми же кусочками пицц, но в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю):

Первый рисунок изображает дробь (восемь кусочков из двенадцати), а второй рисунок — дробь (три кусочка из двенадцати). Отрезав от восьми кусочков три кусочка мы получаем пять кусочков из двенадцати. Дробь и описывает эти пять кусочков.

Пример 2. Найти значение выражения

У этих дробей разные знаменатели, поэтому сначала нужно привести их к одинаковому (общему) знаменателю.

Найдём НОК знаменателей этих дробей.

Знаменатели дробей это числа 10, 3 и 5. Наименьшее общее кратное этих чисел равно 30

НОК (10, 3, 5) = 30

Теперь находим дополнительные множители для каждой дроби. Для этого разделим НОК на знаменатель каждой дроби.

Найдём дополнительный множитель для первой дроби. НОК это число 30, а знаменатель первой дроби — число 10. Делим 30 на 10, получаем первый дополнительный множитель 3. Записываем его над первой дробью:

Теперь находим дополнительный множитель для второй дроби. Разделим НОК на знаменатель второй дроби. НОК это число 30, а знаменатель второй дроби — число 3. Делим 30 на 3, получаем второй дополнительный множитель 10. Записываем его над второй дробью:

Теперь находим дополнительный множитель для третьей дроби. Разделим НОК на знаменатель третьей дроби. НОК это число 30, а знаменатель третьей дроби — число 5. Делим 30 на 5, получаем третий дополнительный множитель 6. Записываем его над третьей дробью:

Теперь всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые (общие) знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример.

Продолжение примера не поместится на одной строке, поэтому переносим продолжение на следующую строку. Не забываем про знак равенства (=) на новой строке:

В ответе получилась правильная дробь, и вроде бы нас всё устраивает, но она слишком громоздка и некрасива. Надо бы сделать её проще. А что можно сделать? Можно сократить эту дробь.

Чтобы сократить дробь , нужно разделить её числитель и знаменатель на (НОД) чисел 20 и 30.

Итак, находим НОД чисел 20 и 30:

Теперь возвращаемся к нашему примеру и делим числитель и знаменатель дроби на найденный НОД, то есть на 10

Получили ответ

Умножение дроби на число

Чтобы умножить дробь на число, нужно числитель данной дроби умножить на это число, а знаменатель оставить без изменений.

Пример 1 . Умножить дробь на число 1 .

Умножим числитель дроби на число 1

Запись можно понимать, как взять половину 1 раз. К примеру, если пиццы взять 1 раз, то получится пиццы

Из законов умножения мы знаем, что если множимое и множитель поменять местами, то произведение не изменится. Если выражение , записать как , то произведение по прежнему будет равно . Опять же срабатывает правило перемножения целого числа и дроби:

Эту запись можно понимать, как взятие половины от единицы. К примеру, если имеется 1 целая пицца и мы возьмем от неё половину, то у нас окажется пиццы:

Пример 2 . Найти значение выражения

Умножим числитель дроби на 4

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Выражение можно понимать, как взятие двух четвертей 4 раза. К примеру, если пиццы взять 4 раза, то получится две целые пиццы

А если поменять множимое и множитель местами, то получим выражение . Оно тоже будет равно 2. Это выражение можно понимать, как взятие двух пицц от четырех целых пицц:

Число, которое умножается на дробь, и знаменатель дроби разрешается , если они имеют общий делитель, бóльший единицы.

Например, выражение можно вычислить двумя способами.

Первый способ . Умножить число 4 на числитель дроби, а знаменатель дроби оставить без изменений:

Второй способ . Умножаемую четвёрку и четвёрку, находящуюся в знаменателе дроби , можно сократить. Сократить эти четвёрки можно на 4 , поскольку наибольший общий делитель для двух четвёрок есть сама четвёрка:

Получился тот же результат 3. После сокращения четвёрок, на их месте образуются новые числа: две единицы. Но перемножение единицы с тройкой, и далее деление на единицу ничего не меняет. Поэтому решение можно записать покороче:

Сокращение может быть выполнено даже тогда, когда мы решили воспользоваться первым способом, но на этапе перемножения числа 4 и числителя 3 решили воспользоваться сокращением:

А вот к примеру выражение можно вычислить только первым способом — умножить 7 на знаменатель дроби , а знаменатель оставить без изменений:

Связано это с тем, что число 7 и знаменатель дроби не имеют общего делителя, бóльшего единицы, и соответственно не сокращаются.

Некоторые ученики по ошибке сокращают умножаемое число и числитель дроби. Делать этого нельзя. Например, следующая запись не является правильной:

Сокращение дроби подразумевает, что и числитель и знаменатель будет разделён на одно и тоже число. В ситуации с выражением деление выполнено только в числителе, поскольку записать это всё равно, что записать . Видим, что деление выполнено только в числителе, а в знаменателе никакого деления не происходит.

Умножение дробей

Чтобы перемножить дроби, нужно перемножить их числители и знаменатели. Если в ответе получится неправильная дробь, нужно выделить в ней целую часть.

Пример 1. Найти значение выражения .

Получили ответ . Желательно сократить данную дробь. Дробь можно сократить на 2. Тогда окончательное решение примет следующий вид:

Выражение можно понимать, как взятие пиццы от половины пиццы. Допустим, у нас есть половина пиццы:

Как взять от этой половины две третьих? Сначала нужно поделить эту половину на три равные части:

И взять от этих трех кусочков два:

У нас получится пиццы. Вспомните, как выглядит пицца, разделенная на три части:

Один кусок от этой пиццы и взятые нами два кусочка будут иметь одинаковые размеры:

Другими словами, речь идет об одном и том же размере пиццы. Поэтому значение выражения равно

Пример 2 . Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Пример 3. Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась правильная дробь, но будет хорошо, если её сократить. Чтобы сократить эту дробь, нужно числитель и знаменатель данной дроби разделить на наибольший общий делитель (НОД) чисел 105 и 450.

Итак, найдём НОД чисел 105 и 450:

Теперь делим числитель и знаменатель нашего ответа на НОД, который мы сейчас нашли, то есть на 15

Представление целого числа в виде дроби

Любое целое число можно представить в виде дроби. Например, число 5 можно представить как . От этого пятёрка своего значения не поменяет, поскольку выражение означает «число пять разделить на единицу», а это, как известно равно пятёрке:

Обратные числа

Сейчас мы познакомимся с очень интересной темой в математике. Она называется «обратные числа».

Определение. Обратным к числу a называется число, которое при умножении на a даёт единицу.

Давайте подставим в это определение вместо переменной a число 5 и попробуем прочитать определение:

Обратным к числу 5 называется число, которое при умножении на 5 даёт единицу.

Можно ли найти такое число, которое при умножении на 5, даёт единицу? Оказывается можно. Представим пятёрку в виде дроби:

Затем умножить эту дробь на саму себя, только поменяем местами числитель и знаменатель. Другими словами, умножим дробь на саму себя, только перевёрнутую:

Что получится в результате этого? Если мы продолжим решать этот пример, то получим единицу:

Значит обратным к числу 5, является число , поскольку при умножении 5 на получается единица.

Обратное число можно найти также для любого другого целого числа.

Найти обратное число можно также для любой другой дроби. Для этого достаточно перевернуть её.

Деление дроби на число

Допустим, у нас имеется половина пиццы:

Разделим её поровну на двоих. Сколько пиццы достанется каждому?

Видно, что после разделения половины пиццы получилось два равных кусочка, каждый из которых составляет пиццы. Значит каждому достанется по пиццы.

Калькулятор дробей предназначен для быстрого расчета операций с дробями, поможет легко дроби сложить, умножить, поделить или вычесть.

Современные школьники начинают изучение дробей уже в 5 классе, с каждым годом упражнения с ними усложняются. Математические термины и величины, которые мы узнаем в школе, редко могут пригодиться нам во взрослой жизни. Однако дроби, в отличие от логарифмов и степеней, встречаются в повседневности достаточно часто (измерение расстояния, взвешивание товара и т.д.). Наш калькулятор предназначен для быстрого проведения операций с дробями.

Для начала определим, что такое дроби и какие они бывают. Дробями называют отношение одного числа к другому, это число, состоящее из целого количества долей единицы.

Разновидности дробей:

  • Обыкновенные
  • Десятичные
  • Смешанные

Пример обыкновенных дробей:

Верхнее значение является числителем, нижнее знаменателем. Черточка показывает нам, что верхнее число делится на нижнее. Вместо подобного формата написания, когда черточка находится горизонтально, можно писать по-другому. Можно ставить наклонную линию, например:

1/2, 3/7, 19/5, 32/8, 10/100, 4/1

Десятичные дроби являются самой популярной разновидностью дробей. Они состоят из целой части и дробной, отделенные запятой.

Пример десятичных дробей:

0,2, или 6,71 или 0,125

Состоят из целого числа и дробной части. Чтобы узнать значение этой дроби, нужно сложить целое число и дробь.

Пример смешанных дробей:

Калькулятор дробей на нашем сайте способен быстро в онлайн-режиме выполнить любые математические операции с дробями:

  • Сложение
  • Вычитание
  • Умножение
  • Деление

Для осуществления расчета нужно ввести цифры в поля и выбрать действие. У дробей нужно заполнить числитель и знаменатель, целое число может не писаться (если дробь обыкновенная). Не забудьте нажать на кнопку «равно».

Удобно, что калькулятор сразу предоставляет процесс решения примера с дробями, а не только готовый ответ. Именно благодаря развернутому решению вы можете использовать данный материал при решении школьных задач и для лучшего освоения пройденного материала.

Вам нужно осуществить расчет примера:

После введения показателей в поля формы получаем:


Чтобы сделать самостоятельный расчет, введите данные в форму.

Умножение и деление дробей.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

Эта операция гораздо приятнее сложения-вычитания ! Потому что проще. Напоминаю: чтобы умножить дробь на дробь, нужно перемножить числители (это будет числитель результата) и знаменатели (это будет знаменатель). То есть:

Например:

Всё предельно просто . И, пожалуйста, не ищите общий знаменатель! Не надо его здесь…

Чтобы разделить дробь на дробь, нужно перевернуть вторую (это важно!) дробь и их перемножить, т.е.:

Например:

Если попалось умножение или деление с целыми числами и дробями — ничего страшного. Как и при сложении, делаем из целого числа дробь с единицей в знаменателе — и вперёд! Например:

В старших классах часто приходится иметь дело с трехэтажными (а то и четырехэтажными!) дробями. Например:

Как эту дробь привести к приличному виду? Да очень просто! Использовать деление через две точки:

Но не забывайте о порядке деления! В отличие от умножения, здесь это очень важно! Конечно, 4:2, или 2:4 мы не спутаем. А вот в трёхэтажной дроби легко ошибиться. Обратите внимание, например:

В первом случае (выражение слева):

Во втором (выражение справа):

Чувствуете разницу? 4 и 1/9!

А чем задается порядок деления? Или скобками, или (как здесь) длиной горизонтальных черточек. Развивайте глазомер. А если нет ни скобок, ни черточек, типа:

то делим-умножаем по порядочку, слева направо !

И еще очень простой и важный приём. В действиях со степенями он вам ох как пригодится! Поделим единицу на любую дробь, например, на 13/15:

Дробь перевернулась! И так бывает всегда. При делении 1 на любую дробь, в результате получаем ту же дробь, только перевернутую.

Вот и все действия с дробями. Вещь достаточно простая, но ошибок даёт более, чем достаточно. Примите к сведению практические советы, и их (ошибок) будет меньше!

Практические советы:

1. Самое главное при работе с дробными выражениями — аккуратность и внимательность! Это не общие слова, не благие пожелания! Это суровая необходимость! Все вычисления на ЕГЭ делайте как полноценное задание, сосредоточенно и чётко. Лучше написать две лишние строчки в черновике, чем накосячить при расчёте в уме.

2. В примерах с разными видами дробей — переходим к обыкновенным дробям.

3. Все дроби сокращаем до упора.

4. Многоэтажные дробные выражения сводим к обыкновенным, используя деление через две точки (следим за порядком деления!).

5. Единицу на дробь делим в уме, просто переворачивая дробь.

Вот вам задания, которые нужно обязательно прорешать. Ответы даны после всех заданий. Используйте материалы этой темы и практические советы. Прикиньте, сколько примеров вы смогли решить правильно. С первого раза! Без калькулятора! И сделайте верные выводы…

Помните – правильный ответ, полученный со второго (тем более – третьего) раза – не считается! Такова суровая жизнь.

Итак, решаем в режиме экзамена ! Это уже подготовка к ЕГЭ, между прочим. Решаем пример, проверяем, решаем следующий. Решили все — проверили снова с первого по последний. И только потом смотрим ответы.

Вычислить:

Порешали?

Ищем ответы, которые совпадают с вашими. Я специально их в беспорядке записал, подальше от соблазна, так сказать… Вот они, ответы, через точку с запятой записаны.

0; 17/22; 3/4; 2/5; 1; 25.

А теперь делаем выводы. Если всё получилось — рад за вас! Элементарные вычисления с дробями — не ваша проблема! Можно заняться более серьёзными вещами. Если нет…

Значит, у вас одна из двух проблем. Или обе сразу.) Нехватка знаний и (или) невнимательность. Но… Это решаемые проблемы.

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Действия с дробями. В этой статье разберём примеры, всё подробно с пояснениями. Рассматривать будем обыкновенные дроби. В дальнейшем разберём и десятичные. Рекомендую посмотреть весь и изучать последовательно.

1. Сумма дробей, разность дробей.

Правило: при сложении дробей с равными знаменателями, в результате получаем дробь – знаменатель которой остаётся тот же, а числитель её будет равен сумме числителей дробей.

Правило: при вычислении разности дробей с одинаковыми знаменателями получаем дробь – знаменатель остаётся тот же, а из числителя первой дроби вычитается числитель второй.

Формальная запись суммы и разности дробей с равными знаменателями:


Примеры (1):


Понятно, что когда даны обыкновенные дроби, то всё просто, а если смешанные? Ничего сложного…

Вариант 1 – можно перевести их в обыкновенные и далее вычислять.

Вариант 2 – можно отдельно «работать» с целой и дробной частью.

Примеры (2):


Ещё:

А если будет дана разность двух смешанных дробей и числитель первой дроби будет меньше числителя второй? Тоже можно действовать двумя способами.

Примеры (3):

*Перевели в обыкновенные дроби, вычислили разность, перевели полученную неправильную дробь в смешанную.


*Разбили на целые и дробные части, получили тройку, далее представили 3 как сумму 2 и 1, при чём единицу представили как 11/11, далее нашли разность 11/11 и 7/11 и вычислили результат. Смысл изложенных преобразований заключается в том, чтобы взять (выделить) единицу и представить её в виде дроби с нужным нам знаменателем, далее от этой дроби мы уже можем вычесть другую.

Ещё пример:


Вывод: имеется универсальный подход – для того, чтобы вычислить сумму (разность) смешанных дробей с равными знаменателями их всегда можно перевести в неправильные, далее выполнить необходимое действие. После этого если в результате получаем неправильную дробь переводим её в смешанную.

Выше мы рассмотрели примеры с дробями, у которых равные знаменатели. А если знаменатели будут отличаться? В этом случае дроби приводятся к одному знаменателю и выполняется указанное действие. Для изменения (преобразования) дроби используется основное свойство дроби.

Рассмотрим простые примеры:


В данных примерах мы сразу видим каким образом можно преобразовать одну из дробей, чтобы получить равные знаменатели.

Если обозначить способы приведения дробей к одному знаменателю, то этот назовём СПОСОБ ПЕРВЫЙ .

То есть, сразу при «оценке» дроби нужно прикинуть сработает ли такой подход – проверяем делится ли больший знаменатель на меньший. И если делится, то выполняем преобразование — домножаем числитель и знаменатель так чтобы у обеих дробей знаменатели стали равными.

Теперь посмотрите на эти примеры:

К ним указанный подход не применим. Существуют ещё способы приведения дробей к общему знаменателю, рассмотрим их.

Способ ВТОРОЙ .

Умножаем числитель и знаменатель первой дроби на знаменатель второй, а числитель и знаменатель второй дроби на знаменатель первой:

*Фактически мы приводим дроби к виду, когда знаменатели становятся равными. Далее используем правило сложения робей с равными знаменателями.

Пример:

*Данный способ можно назвать универсальным, и он работает всегда. Единственный минус в том, что после вычислений может получится дробь которую необходимо будет ещё сократить.

Рассмотрим пример:

Видно что числитель и знаменатель делится на 5:

Способ ТРЕТИЙ.

Необходимо найти наименьшее общее кратное (НОК) знаменателей. Это и будет общий знаменатель. Что это за число такое? Это наименьшее натуральное число, которое делится на каждое из чисел.

Посмотрите, вот два числа: 3 и 4, есть множество чисел, которые делятся на них – это 12, 24, 36, … Наименьшее из них 12. Или 6 и 15, на них делятся 30, 60, 90 …. Наименьшее 30. Вопрос – а как определить это самое наименьшее общее кратное?

Имеется чёткий алгоритм, но часто это можно сделать и сразу без вычислений. Например, по указанным выше примерам (3 и 4, 6 и 15) никакого алгоритма не надо, мы взяли большие числа (4 и 15) увеличили их в два раза и увидели, что они делятся на второе число, но пары чисел могут быть и другими, например 51 и 119.

Алгоритм. Для того, чтобы определить наименьшее общее кратное нескольких чисел, необходимо:

— разложить каждое из чисел на ПРОСТЫЕ множители

— выписать разложение БОЛЬШЕГО из них

— умножить его на НЕДОСТАЮЩИЕ множители других чисел

Рассмотрим примеры:

50 и 60 => 50 = 2∙5∙5 60 = 2∙2∙3∙5

в разложении большего числа не хватает одной пятёрки

=> НОК(50,60) = 2∙2∙3∙5∙5 = 300

48 и 72 => 48 = 2∙2∙2∙2∙3 72 = 2∙2∙2∙3∙3

в разложении большего числа не хватает двойки и тройки

=> НОК(48,72) = 2∙2∙2∙2∙3∙3 = 144

* Наименьшее общее кратное двух простых чисел равно их произведению

Вопрос! А чем полезно нахождение наименьшего общего кратного, ведь можно пользоваться вторым способом и полученную дробь просто сократить? Да, можно, но это не всегда удобно. Посмотрите, какой получится знаменатель для чисел 48 и 72, если их просто перемножить 48∙72 = 3456. Согласитесь, что приятнее работать с меньшими числами.

Рассмотрим примеры:

*51 = 3∙17 119 = 7∙17

в разложении большего числа не хватает тройки

=> НОК(51,119) = 3∙7∙17

А теперь применим первый способ:

*Посмотрите какая разница в вычислениях, в первом случае их минимум, а во втором нужно потрудиться отдельно на листочке, да ещё и дробь которую получили сократить необходимо. Нахождение НОК упрощает работу значительно.

Ещё примеры:


*Во втором примере и так видно, что наименьшее число, которое делится на 40 и 60 равно 120.

ИТОГ! ОБЩИЙ АЛГОРИТМ ВЫЧИСЛЕНИЙ!

— приводим дроби к обыкновенным, если есть целая часть.

— приводим дроби к общему знаменателю (сначала смотрим делится ли один знаменатель на другой, если делится то умножаем числитель и знаменатель этой другой дроби; если не делится действуем посредством других указанных выше способов).

— получив дроби с равными знаменателями, выполняем действия (сложение, вычитание).

— если необходимо, то результат сокращаем.

— если необходимо, то выделяем целую часть.

2. Произведение дробей.

Правило простое. При умножении дробей умножаются их числители и знаменатели:

Примеры:

1. Правило сложения дробей с одинаковыми знаменателями:

Пример 1:

Пример 2:

Правило сложения дробей с разными знаменателями:

Пример 1:

Пример 2:

Здесь знаменатели не перемножали, а взяли наименьший общий множитель a2.
(В знаменателе старшая степень 2.)
Дополнительный множитель для первой дроби 1, для второй а.

2. Правило вычитания дробей с одинаковыми знаменателями:

Правило вычитания дробей с разными знаменателями:

3. Правило умножения обыкновенных дробей:

4. Правило деления дробей:

Пример:

Обыкновенная (простая) дробь. Числитель и знаменатель дроби.
Правильная и неправильная дробь. Смешанное число.
Неполное частное. Целая и дробная часть. Обратные дроби. Часть единицы или несколько её частей называются обыкновенной или простой дробью . Количество равных частей, на которые делится единица, называется знаменателем , а количество взятых частей – числителем . Дробь записывается в виде:


Здесь 3 – числитель, 7 – знаменатель.

Если числитель меньше знаменателя, то дробь меньше 1 и называется правильной дробью . Если числитель равен знаменателю, то дробь равна 1. Если числитель больше знаменателя, то дробь больше 1. В обоих последних случаях дробь называется неправильной . Если числитель делится на знаменатель, то эта дробь равна частному от деления: 63 / 7 = 9. Если деление выполняется с остатком, то эта неправильная дробь может быть представлена смешанным числом :

Здесь 9 – неполное частное (целая часть смешанного числа), 2 – остаток (числитель дробной части ), 7 – знаменатель.
Часто бывает необходимо решать обратную задачу – обратить смешанное число в дробь . Для этого умножаем целую часть смешанного числа на знаменатель и прибавляем числитель дробной части . Это будет числитель обыкновенной дроби, а знаменатель остаётся прежним.

Обратные дроби – это две дроби, произведение которых равно 1. Например, 3 / 7 и 7 / 3 ; 15 / 1 и 1 / 15 и т.д.

Расширение дроби. Сокращение дроби. Сравнение дробей.
Приведение к общему знаменателю. Сложение и вычитание дробей.
Умножение дробей. Деление дробей
Расширение дроби. Значение дроби не меняется, если умножить её числитель и знаменатель на одно и то же число, отличное от нулярасширением дробиНапример,


Сокращение дроби. Значение дроби не меняется, если разделить её числитель и знаменатель на одно и то же число, отличное от нуля . Это преобразование называется сокращением дроби . Например,

Сравнение дробей. Из двух дробей с одинаковыми числителями та больше, знаменатель которой меньше:


Из двух дробей с одинаковыми знаменателями та больше, числитель которой больше:


Для сравнения дробей, у которых числители и знаменатели различны, необходимо расширить их, чтобы привести к общему знаменателю.
П р и м е р. Сравнить две дроби:

Использованное здесь преобразование называется приведением дробей к общему знаменателю .
Сложение и вычитание дробей. Если знаменатели дробей одинаковы, то для того, чтобы сложить дроби, надо сложить их числители, а для того, чтобы вычесть дроби, надо вычесть их числители (в том же порядке). Полученная сумма или разность будет числителем результата; знаменатель останется тем же. Если знаменатели дробей различны, необходимо сначала привести дроби к общему знаменателю. При сложении смешанных чисел их целые и дробные части складываются отдельно. При вычитании смешанных чисел мы рекомендуем сначала преобразовать их к виду неправильных дробей, затем вычесть из одной другую, а после этого вновь привести результат, если требуется, к виду смешанного числа.
П р и м е р.


Умножение дробей. Умножить некоторое число на дробь означает умножить его на числитель и разделить произведение на знаменатель. Следовательно, мы имеем общее правило умножения дробей: для перемножения дробей необходимо перемножить отдельно их числители и знаменатели и разделить первое произведение на второе .
П р и м е р.
Деление дробей. я того, чтобы разделить некоторое число на дробь, необходимо умножить это число на обратную дробьЭто правило вытекает из определения деления (см. раздел “Арифметические операции”).
П р и м е р.

Десятичная дробь. Целая часть. Десятичная точка.
Десятичные знаки. Свойства десятичных дробей.
Периодическая десятичная дробь. Период
Десятичная дробь есть результат деления единицы на десять, сто, тысячу и т.д. частей. Эти дроби очень удобны для вычислений, так как они основаны на той же позиционной системе, на которой построены счёт и запись целых чисел. Благодаря этому запись и правила действий с десятичными дробями фактически те же, что и для целых чисел. При записи десятичных дробей нет необходимости отмечать знаменатель, это определяется местом, которое занимает соответствующая цифра. Сначала пишется целая часть числа, затем справа ставится десятичная точка . Первая цифра после десятичной точки означает число десятых, вторая – число сотых, третья – число тысячных и т.д. Цифры, расположенные после десятичной точки, называются десятичными знаками .
П р и м е р.
Одно из преимуществ десятичных дробей – они легко приводятся к виду обыкновенных: число после десятичной точки (в нашем случае 5047) – это числитель; знаменатель же равен n –ой степени 10, где n — количество десятичных знаков (в нашем случае n = 4):
Если десятичная дробь не содержит целой части, то перед десятичной точкой ставится ноль:

Свойства десятичных дробей.

1. Десятичная дробь не меняется, если справа добавить нули :

2. Десятичная дробь не меняется, если удалить нули, расположенные
в конце десятичной дроби :

0.00123000 = 0.00123 .

Внимание!Нельзя удалять нули, расположенные не в конце десятичной дроби!br />

Эти свойства позволяют быстро умножать и делить десятичные дроби на 10, 100, 1000 и т.д.

Периодическая десятичная дробь одержит бесконечно повторяющуюся группу цифр, называемую периодом . Период записывается в скобках. Например, 0.12345123451234512345… = 0.(12345).

П р и м е р. Если разделить 47 на 11, то получим 4.27272727… = 4.(27).


Умножение десятичных дробей.
Деление десятичных дробей.

Сложение и вычитание десятичных дробей. Эти операции выполняются так же, как и сложение и вычитание целых чисел. Необходимо только записать соответствующие десятичные знаки один под другим.
П р и м е р.

Умножение десятичных дробей. На первом этапе перемножаем десятичные дроби как целые числа, не принимая во внимание десятичную точку. Затем применяется следующее правило: количество десятичных знаков в произведении равно сумме десятичных знаков во всех сомножителях .
Замечание : до простановки десятичной точки в произведении нельзя отбрасывать нули в конце !
П р и м е р.

Сумма чисел десятичных знаков в сомножителях равна: 3 + 4 = 7. Сумма цифр в произведении равна 6. Поэтому необходимо добавить один ноль слева: 0197056 и проставить перед ним десятичную точку: 0.0197056.
Деление десятичных дробей
Деление десятичной дроби на целое число
Если делимое меньше делителя , записываем ноль в целой части частного и ставим после него десятичную точку. Затем, не принимая во внимание десятичную точку делимого, присоединяем к его целой части следующую цифру дробной части и опять сравниваем полученную целую часть делимого с делителем. Если новое число опять меньше делителя, ставим ещё один ноль после десятичной точки в частном и присоединяем к целой части делимого следующую цифру его дробной части. Этот процесс повторяем до тех пор, пока полученное делимое не станет больше делителя. После этого деление выполняется, как для целых чисел. Если делимое больше делителя или равно ему , сначала делим его целую часть, записываем результат деления в частном и ставим десятичную точку. После этого деление продолжается, как в случае целых чисел.
П р и м е р. Разделить 1.328 на 64.
Р е ш е н и е:
Деление одной десятичной дроби на другую.
Сначала переносим десятичные точки в делимом и делителе на число десятичных знаков в делителе, то есть делаем делитель целым числом. Теперь выполняем деление, как в предыдущем случае.
П р и м е р. Разделить 0.04569 на 0.0006.
Р е ш е н и е. Переносим десятичные точки на 4 позиции вправо и делим 456.9 на 6:

Для того, чтобы обратить десятичную дробь в обыкновенную, надо в качестве числителя взять число, стоящее после десятичной точки, а в качестве знаменателя взять n-ую степень десяти ( здесь n – количество десятичных знаков ). Отличная от нуля целая часть сохраняется в обыкновенной дроби; нулевая целая часть опускается. Например:
Для того, чтобы обратить обыкновенную дробь в десятичную, надо разделить числитель на знаменатель в соответствии с правилами деления .
П р и м е р. Обратить 5 / 8 в десятичную дробь.
Р е ш е н и е. Деля 5 на 8, получаем 0.625. (Проверьте, пожалуйста!).
В большинстве случаев этот процесс может продолжаться бесконечно. Тогда невозможно точно обратить обыкновенную дробь в десятичную. Но на практике это никогда и не требуется. Деление прерывается, если представляющие интерес десятичные знаки уже получены.
П р и м е р. Обратить 1 / 3 в десятичную дробь.
Р е ш е н и е. Деление 1 на 3 будет бесконечным: 1:3 = 0.3333… .
Проверьте это, пожалуйста!

делаем бескомпромиссный калькулятор / Хабр

Калькулятор как он есть.

Вообще-то в блогах я обычно выступаю в роли фриковатого научного сотрудника, занудным голосом вещающего про какое-нибудь измерение параметров Стандартной Модели. Но сейчас я попробую совсем другой жанр. Короче говоря, в один прекрасный день я понял, что мне не хватает «железного» научного калькулятора. Пришлось делать самому. 

Но зачем? 

По работе (а я занимаюсь физикой элементарных частиц), кроме серьёзных вычислений, часто нужно делать какие-то прикидки «на коленке», и калькулятор так или иначе приходится использовать. Долгое время я пользовался чем придётся — чаще всего приложением на телефоне или питоновским интерпретатором. Но всё же удобно, когда на столе есть железяка, которая выполняет свою функцию, и выполняет её хорошо. Ну и на Facebook меньше поводов отвлекаться.

Калькуляторов у меня не было с окончания универа (последний был Citizen SRP-75). Как оказалось, дизайн их интерфейса с тех пор изменился неузнаваемо и топовые модели теперь скорее напоминают какую-нибудь Wolfram Mathematica. Ничего не имею против, но если мне надо посчитать действительно что-то сложное, гораздо удобнее это сделать на компьютере. В калькуляторе же мне хотелось бы иметь минимальный набор функций, которые мне нужны, без необходимости путешествовать по многоуровневым меню. И не иметь тех, которые точно не нужны, т. к. место на клавиатуре не резиновое. 

Как оказалось, есть небольшая фирма SwissMicros, которая выпускает неплохие копии старых программируемых калькуляторов Hewlett Packard (HP) на основе современных ARM-процессоров и симулятора Free42 с открытым кодом. Но опять же, это не идеал — есть некоторые функции (об этом ниже), которые мне пришлось бы программировать, а запускать программы это совсем не то же самое, что нажать на кнопку. 

Вот примерно такая мотивация привела меня к решению сделать свой калькулятор (с трудом удерживаюсь от цитирования персонажа Футурамы). Хотя, честно, полностью рациональным такое решение назвать нельзя, и по большей части оно объясняется диагнозом «руки чесались». 

Для разнообразия я решил в кои-то веки сделать проект, который не выглядит слишком «колхозно», которым реально можно пользоваться, и может быть даже не слишком прячась от коллег по работе. Хотя это и не первый раз, когда я делаю какую-то электронику, до сих пор я в основном возился с DIP-корпусами, макетками и синей изолентой, а тут сам бог велел сделать что-то посовременнее. Соответственно, я получил море новых впечатлений, разбираясь с многими вещами с нуля (программирование для ARM, пайка SMD, разработка в KiCAD и OpenSCAD, 3D-печать). Готовьтесь, сейчас я ими здесь поделюсь. Вдруг кому-то поможет, или кто из более опытных посоветует что-нибудь дельное.

Код, как и вся, с позволения сказать, документация выложены на GitHub. Да, код ужасен. Да, постараюсь исправиться 🙂 

Концепция

Итак, будем делать научный, непрограммируемый, калькулятор, в который при желании можно добавлять новые функции. Как бывший член экипажа лунолёта «Кон-Тики», я, конечно, обязан был сделать калькулятор с обратной бесскобочной (она же польская, она же RPN) логикой. Благо, её и программировать легче. Ещё одним преимуществом RPN поделился со мной пользователь с сайта Hackaday: такой калькулятор у вас вряд ли кто попросит попользоваться на время.

Итак, что хотелось мне иметь в идеале в своей машинке: 

  • Стандартный набор «научных» функций (тригонометрия, корни, степени, логарифмы, преобразование углов, систем координат и т.д.). Не уверен, чтобы я когда-то на трезвую голову пользовался гиперболическими функциями, поэтому шинусы и кошинусы идут лесом. Туда же отправляем и углы в градах — градусов и радиан будет достаточно. 

  • Из того, что редко попадается в коммерческих калькуляторах — некоторые функции для работы со случайными распределениями: erf(x) (бывает частенько, но обычно с доступом через меню) и обратная к ней erf-1(x) (никогда не встречал), интеграл от распределения хи-квадрат для данного числа степеней свободы, распределение Пуассона. При этом мне не нужен статистический режим как таковой с вводом больших массивов данных — для тяжёлой обработки данных у меня всё равно есть компьютер. 

  • Режим вычислений с ошибками (точнее, неопределённостями), хотя бы без учета корреляций. Такой режим есть в нескольких калькуляторах на Android, но в «железных», насколько я знаю, такого нигде нет, а жаль. 

  • Некоторые очень специфические функции, в основном связанные с релятивистской кинематикой. 

  • Стандартные режимы отображения SCI (с мантиссой и порядком) и ENG (с порядком, кратным трём) и изменяемым количеством значащих цифр мантиссы (3-10). В режиме ENG, к тому же, можно для удобства сделать показ префиксов единиц СИ (m, k, M и т. д.). Диапазона double будет более чем достаточно. SwissMicros делает калькуляторы c quarduple precision (что ещё ждать от швейцарской-то фирмы?), но в нашей немудрёной науке, если в вычислении используется больше шести-семи значащих цифр — с вычислением что-то не так.

  • Обратная бесскобочная логика со стеком из 4 элементов (X,Y,Z,T) плюс регистр предыдущего результата (LASTx или X1) как у HP или Б3-34. Есть ещё вариант сделать бесконечный стек, как у старших моделей HP, но пока я ограничился более простым вариантом. 

  • Что бы самодельщик ни делал, получаются либо часы, либо погодная станция, поэтому я решил отказаться от любых функций, которые не относятся непосредственно к калькулятору. Часы у меня и на руке есть, а погодную станцию я уже собрал на Raspberry Pi. Единственный датчик, который есть в проекте — напряжение питания батареи.

Электроника

В нашей машинке всё должно быть прекрасно, и экран, и клавиатура, и процессор. Вспомнив про SwissMicros, можно посмотреть, какие детали используют они, и попытаться сделать как минимум не хуже (благо любители их калькуляторы уже расковыряли). 

С экраном вопросов нет — это будет монохромный ЖКИ дисплей Sharp Memory LCD, как у SwissMicros DM42. Судя по многим отзывам, это практически идеальный дисплей — с хорошей контрастностью, очень малой потребляемой мощностью, и управляется по последовательной шине SPI. В нашем случае это будет модуль LS027B7DH01 размером 2.7” (размер изображения 60×40 мм) и разрешением 400×240 точек. С таким разрешением можно показывать все 4 регистра стека одновременно, да и для режима вычислений с ошибками это будет полезно. Модуль потребляет всего около 20 мкА от 5В в режиме «показываю, но ничего не делаю».

Процессор, недолго думая, я тоже взял из DM42: STM32L476, правда, в корпусе LQFP64 (модификация STM32L476RG). В DM42 стоит тот же процессор в корпусе LQFP100 (100 пинов), но нам не нужны ни внешний Flash, ни SD-карта, так что 64 пина хватит за глаза. Процессор может работать на частоте до 80 МГц, есть 128 кБ оперативки и 1 МБ программного флеша — ought to be enough for anybody. Ну и ещё много всяческого добра, которым мы по большей части не будем пользоваться. 

С клавиатурой вопросов больше. Многие обозреватели жалуются, что у SwissMicros слишком жёсткая клавиатура, быстро кнопки нажимать неудобно, и вообще ничто не может сравниться с классикой HP. Попробуем найти что-то получше, чем купольные кнопки на DM42. Первые попавшиеся тактовые кнопки с AliExpress мне показались слишком тугими. Порывшись по каталогам, я нашёл самые мягкие и достаточно плоские из тех, которые можно заказать, не особо напрягаясь — Panasonic EVQQ2B01W с усилием нажатия 50 г (при том, что обычные кнопки, которые продаются на каждом углу, обычно требуют усилие в 150-200 г). 

Схема электрическая принципиальная. Есть несколько косяков, о которых в тексте, но по большей части здесь нет ничего интересного.

Схема всего девайса элементарная и показана на рисунке выше. Собственно, кроме STM32 в стандартном подключении, клавиатурной матрицы и пары разъемов (один для ЖКИ, другой для программатора) там есть только преобразователь напряжения 3В в 5В для питания ЖКИ на очень экономном чипе TPS61222. STM запитан непосредственно от литиевой батарейки. Не знаю, хорошая ли это идея, или лучше было поставить стабилизированный преобразователь. Кварц для тактирования процессора решил не ставить (можно и встроенным RC генератором обойтись), но на всякий случай поставил часовой кварц. 

Кстати, по поводу питания ЖКИ. То, что нарисовано сейчас на схеме, хоть и работает, но не совсем правильно. Как оказалось уже после того, как я развел и заказал плату, преобразователь TPS61222 не полностью отключает выходную цепь от питания при низком уровне сигнала «5V_EN», а только выключает сам преобразователь, оставляя на выходе 3В вместо пяти. Надо внимательнее читать даташиты! Попутно оказалось, что и от трех вольт ЖКИ прекрасно работает, и даже контрастность не страдает. Может быть, в следующей версии платы преобразователь можно просто выкинуть? 

Рисовал схему и разводил плату в KiCAD. Почти все элементы там нашлись в стандартной библиотеке, кроме 10-пинового разъёма Molex с шагом 0.5 мм для ЖКИ, его пришлось нарисовать самому по образцу какого-то другого с другим шагом. 

С лазерным утюгом я не дружу, поэтому плату заказал на одном из специализированных сайтов (в плате нет никаких тонкостей, так что любой дешёвый PCB-сервис должен с ней справиться). Дисплей Sharp и разная мелочь продаётся на AliExpress, а вот с покупкой процессора STM я, похоже, пал жертвой дефицита чипов. Три китайских продавца меня кинули (причём один сделал вид, что всё выслал, тянул две недели, после чего уверял, что посылку задержала таможня, а сам поднял цену на тот же чип раза в три). К счастью, в один прекрасный момент несколько сотен нужных чипов «выбросили» на сайте Mouser, из которых я и отхватил несколько штук. На том же Маузере я заказал и кнопки Panasonic, т.к. на Али практически все кнопки noname с непонятно какими характеристиками.

Несмотря на мой изначальный страх, пайка SMD пошла на удивление легко, даже разъём LCD и сам STM32 с ножками с шагом в 0.5 мм паяются без проблем. Оказалось, пора уже было забыть про натуральную сосновую канифоль и перейти на современную бездушную паяльную пасту. Немного больше тренировки потребовала пайка разной мелочи типоразмера 0603 (резисторы, конденсаторы). 

Собранная плата с обратной стороны. К плюсовому контакту батарейки припаян не предусмотренный в проекте штырь для того, чтобы запитывать плату от программатора STLink и измерять потребляемый ток. Собранная плата с уже прошитым STM32, вид спереди. Дисплей прилеплен на двусторонний скотч.

Прошивка STM32

Как оказалось, найти информацию для того, чтобы начать программирование на STM32 с нуля, не так-то просто, похоже, из-за того, что альтернативных инструментов очень много, они быстро появляются и устаревают. Наверное, в конце концов лучше учиться писать на голом gcc, но для начала я хотел взять какой-нибудь IDE в стиле «для чайников» с визуальным конфигурированием процессора. В результате я использовал STM32Cube IDE. Я так и не смог добиться, чтобы он работал в Ubuntu, поэтому пришлось ставить ради него целую виртуальную машину с Windows 10. 

Несколько слов о том, как работает прошивка. STM большую часть своего времени проводит в режиме STOP, в котором сохраняется вся память контроллера, разрешены внешние прерывания и прерывания по таймеру, но тактовый генератор остановлен. При этом все колонки клавиатурной матрицы установлены в «ноль», а строки подтянуты к плюсу питания и сконфигурированы на внешнее прерывание по спаду сигнала. Когда одна из кнопок нажата, контроллер просыпается и начинает сканировать клавиатуру. 

Функции для работы с дисплеем Sharp я писал сам по даташиту, и там всё оказалось очень просто. Система команд дисплея состоит, практически, из 2-х команд. Первая — это очистка экрана. Вторая — передача массива информации, который состоит из номера строки и 50 байт данных строки. Одна тонкость работы с дисплеем — когда он включен, ему нужен постоянный внешний сигнал около 1 Гц для периодического изменения полярности электрического поля на ЖК-матрице. Этот сигнал генерируется по прерыванию от внутреннего таймера STM. При выключенном ЖКИ этот сигнал надо также выключать.

Собственно саму реализацию алгоритма работы калькулятора я сперва отладил на большом компьютере, написав «заглушки» для функций работы с клавиатурой и дисплеем. STM32L476 поддерживает полную математическую библиотеку gcc, более того, вычисления с плавающей точкой там реализованы в железе, так что всё работает очень быстро. Я понизил частоту работы процессора до 8 МГц, чтобы ограничить максимальный потребляемый ток (который тогда получается около 4 мА при полной нагрузке), при этом никаких видимых задержек при вычислениях не появляется. При меньшей частоте начинает заметно тормозить вывод на экран. 

Для прошивки я купил один из китайских клонов программатора/отладчика ST-Link v2, которые продают где угодно за копейки. С ним вышла небольшая проблема: судя по всему, мой экземпляр не умеет делать «connect under reset», из-за чего STM в состоянии спячки я программировать не могу. Пришлось предусмотреть в прошивке волшебное сочетание кнопок (Shift+RESET), при котором контроллер не уходит в STOP, а ждёт соединения с программатором. Неприятно, но не смертельно. 

Вся прошивка занимает примерно 120 кБ программной памяти. При этом большую часть объёма составляют растровые экранные шрифты (размером от 6×8 до 24×40).

Корпус и клавиатура

Первоначальная наивная задумка была сделать корпус, фрезерованный из алюминия, так, чтоб на века. Но фрезерного станка у меня нет, а после изучения расценок на штучные детали на сайтах типа 3DHubs и Xometry планы пришлось подкорректировать и смотреть в сторону 3D-печати из пластика. Поскольку до этого я ничего, кроме кошечек по готовым чертежам, на своём 3D-принтере не печатал, заодно пришлось разобраться с софтом для 3D-дизайна.

Промаявшись несколько вечеров с глючным FreeCAD’ом (не покупать же программы Autodesk за бешеные деньги), я понял, что гораздо легче написать программу, которая описывает геометрию детали, чем ползать мышкой по меню, поэтому перешёл на OpenSCAD. Хотя у него есть свои ограничения: например, в отличие от FreeCAD, в нём сложно делать фаски и скругления граней. На OpenSCAD дело пошло гораздо веселее.

Корпус и клавиатура, нарисованные в OpenSCAD. 

Корпус состоит из двух частей, скрепляющихся простыми защёлками, без единого болта. Клавиатура представляет собой единую деталь в виде тонкой решётки, к которой за нижнее ребро прикреплены клавиши. После первой попытки изготовления клавиатуры оказалось, что клавиши с такой конструкцией срабатывают очень ненадёжно, в зависимости от того, на какую их часть нажать пальцем. Пришлось делать дополнительную деталь с толкателями, которые передают усилие с клавиши на шток кнопки. Возможно, если бы я заказал кнопки с более длинными штоками (в моих он выступает над поверхностью всего на 0.2 мм), такой проблемы бы не возникло. 

Две части клавиатуры. Можно было бы напечатать их как одну деталь, но тогда пришлось бы делать поддержки и отколупывать их потом от каждой клавиши. На клавиши уже наклеены стикеры с надписями.

Корпус получился не очень тонким (полная толщина 12.5 мм), хотя внутри он по большей части пустой. Всё из-за того, что гнездо для батарейки CR2032 довольно высокое (5.5 мм) и с этим сложно что-либо поделать. Для следующей версии надо будет изучить вопрос, существуют ли более тонкие держатели для CR2032, которые к тому же можно установить в вырез на печатной плате. Таким образом можно было бы сэкономить как минимум пару-тройку миллиметров толщины. 

Не буду здесь долго описывать сагу про печать корпуса — скажу только, что он получился лишь с четвёртой или пятой попытки, при этом пришлось тонко настраивать геометрию моего Ender 3 (перпендикулярность осей X и Y), иначе корпус вело винтом после соединения двух половин. Печатал пластиком PETG.

Надписи на кнопках и на корпусе я напечатал на тонкой матовой клеящейся плёнке для лазерных принтеров (чего только не существует в мире канцелярских товаров!). Кажется, эту идею я нашёл на каком-то форуме любителей самостоятельно делать наклейки для русификации клавиатур (да, такое тоже бывает). Сам PDF-файл с надписями и линиями отреза генерируется питоновским скриптом с использованием библиотеки matplotlib. А что ещё можно использовать для графики с обилием математических символов? Напечатанный текст держится на стикерах намертво, их можно даже мыть. Тот стикер, который на корпусе, за счёт большой площади прилип надёжно. К сожалению, стикеры на кнопках не очень прочно прилипают и неосторожным движением их можно отодрать. Впоследствии, возможно, их лучше будет покрыть сверху лаком, но пока надписи на клавиатуре не устаканились, и так сойдет. Минус такой технологии — наклейки будут хорошо видны только на белом корпусе.

Результат

Вот что в результате получилось. Дисплей в режиме отображения ENG с 6 значащими цифрами и активированным режимом вычислений с неопределенностями. 

Калькулятор в его сегодняшнем состоянии показан на картинке. Большая часть кнопок пояснений не требует. Вот список тех, которые могут быть неочевидными: 

  • F, G — клавиши «shift». Пока в основном задействована только «F». «G» нужна только для обратного направления преобразований η(θ), γ(β), а дальше будет использоваться для новых функций, если таковые появятся. 

  • Mode — изменение режима отображения чисел (FIX, SCI, ENG). 

  • Uncr — включение/выключение режима вычислений с неопределённостями (UNCERT). 

  • Prec — переключение количества значащих цифр мантиссы (от 10 до 3 циклически, с «F» в обратную сторону). 

  • Drop, X​<>Y, Rot↑ — работа со стеком. LASTx — вызов результата предыдущей операции. 

  • DR — переключение измерения углов между градусами и радианами, D<>R — то же с преобразованием значения угла в регистре X. 

  • R→P, P→R — перевод между декартовыми и полярными координатами. 

  • Nσ(x), Nσ(x-y) работают только в режиме неопределённостей, и выполняют, соответственно, вычисление стат. значимости значения в регистре X (значение, деленное на неопредёленность) и значимости разности значений в регистрах X и Y. 

  • η(θ), γ(β), p(z→xy) — те самые специфические функции, которые мало кому нужны: вычисление псевдобыстроты (pseudorapidity), релятивистского гамма-фактора, вычисление импульса в центре масс двухчастичного распада. 

  • «/-/» — обычное изменение знака числа в регистре X, а «±» — переключение между вводом значения и ошибки в режиме UNCERT.

Планы на будущее

В принципе, машинка уже сейчас вполне функциональная, но всегда можно что-то улучшить: 

  • Есть ещё резервы в плане уменьшения энергопотребления. Сейчас калькулятор расходует около 50 мкА в режиме со включенным дисплеем, и 40 мкА с выключенным. Как я уже говорил, полностью питание с дисплея сейчас не снимается, хотя надо бы это пофиксить. Кроме того, можно улучшить алгоритм опроса клавиатуры: сейчас, когда калькулятор включен и работает дисплей, процессор не засыпает, пока нажатая кнопка не отпущена, и потребляет при этом около 4 мА. Надо бы здесь тоже задействовать внешние прерывания и режим STOP. 

  • Функция сканирования клавиатуры понимает только одну нажатую кнопку за раз. Хотелось бы сделать режим «two-key rollover», когда регистрируется кнопка, нажатая до того, как отпущена предыдущая, чтобы кнопки надёжнее срабатывали при быстром наборе. 

  • Как я уже писал выше, можно было бы сделать более тонкий корпус за счёт другого держателя батареи. 

  • Клавиатуре всё ещё далеко до HP и даже до Citizen. Кнопки нажимаются легко, но глубина нажатия всего 0.2 мм — это не очень комфортно. Не знаю, можно ли сделать что-то сильно лучше в домашних условиях, не заказывая кастомную мембранную клавиатуру. 

  • Что хотелось бы из нового функционала. Более удобное отображение значений с неопределённостью, когда есть ненулевой порядок, в виде (1±0.1)e-10 вместо теперешнего 1e-10 ± 1e-11. Больше регистров памяти (пока только один). Целочисленный режим с булевыми функциями и переводом между двоичной, десятичной и шестнадцатеричной системами. Новые функции по мере надобности (вычисление распределений Пуассона и хи-квадрат пока не сделал, но это дело техники). 

По мере работы над проектом, я выкладываю новости в блог Hackaday.io.

P.S. Спасибо @Boomburum за приглашение и советы.

Калькулятор дробей


Калькулятор выполняет базовые и расширенные операции с дробями, выражениями с дробями, объединенными с целыми числами, десятичными знаками и смешанными числами. Он также показывает подробную пошаговую информацию о процедуре расчета дроби. Решайте задачи с двумя, тремя или более дробями и числами в одном выражении.

Правила для выражений с дробями:
Дроби — просто используйте косую черту между числителем и знаменателем, т.е.е., для пяти сотых введите 5/100 . Если вы используете смешанные числа, не забудьте оставить один пробел между целой и дробной частью.
Косая черта разделяет числитель (число над дробной чертой) и знаменатель (число ниже).

Смешанные числа (смешанные дроби или смешанные числа) записываются как целые числа, разделенные одним пробелом и дробью, т. Е. 1 2/3 (с одинаковым знаком). Пример отрицательной смешанной дроби: -5 1/2 .
Поскольку косая черта является одновременно знаком для дробной линии и деления, мы рекомендуем использовать двоеточие (:) в качестве оператора деления дробей i.е., 1/2: 3 .

Десятичные числа (десятичные числа) вводятся с десятичной точкой . , и они автоматически конвертируются в дроби — то есть 1,45 .

Двоеточие : и косая черта / являются символом деления. Может использоваться для деления смешанных чисел 1 2/3: 4 3/8 или может использоваться для записи сложных дробей, например, 1/2: 1/3 .
Звездочка * или × — это символ умножения.1/2
• сложение дробей и смешанных чисел: 8/5 + 6 2/7
• деление целого числа и дроби: 5 ÷ 1/2
• комплексные дроби: 5/8: 2 2/3
• десятичное дробное: 0,625
• Дробь в десятичную: 1/4
• Дробь в проценты: 1/8%
• сравнение дробей: 1/4 2/3
• умножение дроби на целое число: 6 * 3/4 ​​
• квадратный корень дроби: sqrt (1/16)
• уменьшение или упрощение дроби (упрощение) — деление числителя и знаменателя дроби на одно и то же ненулевое число — эквивалентная дробь: 4/22
• выражение в скобках: 1 / 3 * (1/2 — 3 3/8)
• сложная дробь: 3/4 от 5/7
• кратная дробь: 2/3 от 3/5
• разделите, чтобы найти частное: 3/5 ÷ 2 / 3

Калькулятор следует известным правилам для порядка операций .Наиболее распространенные мнемоники для запоминания этого порядка операций:
PEMDAS — круглые скобки, экспоненты, умножение, деление, сложение, вычитание.
BEDMAS — Скобки, экспоненты, деление, умножение, сложение, вычитание
BODMAS — Скобки, порядок или, деление, умножение, сложение, вычитание.
GEMDAS — Группирующие символы — скобки () {}, экспоненты, умножение, деление, сложение, вычитание.
Будьте осторожны, всегда выполняйте умножение и деление перед сложением и вычитанием .Некоторые операторы (+ и -) и (* и /) имеют одинаковый приоритет и должны вычисляться слева направо.

Задачи с дробями в словах:

следующие математические задачи »

Онлайн-калькулятор дробей поддерживает сложение, умножение, вычитание и деление дробей.

Калькуляторы можно использовать для сложения, вычитания, умножения или деления дробей. Кроме того, существуют инструменты, которые можно использовать для упрощения дробей или преобразования десятичных чисел в дроби и наоборот.

Калькулятор правильных / неправильных дробей
Этот калькулятор может выполнять сложение, вычитание, умножение или деление правильных и неправильных дробей. Ввод в любом из полей может быть положительным или отрицательным числом.

Калькулятор смешанных чисел
Этот калькулятор можно использовать для сложения, вычитания, умножения или деления смешанных дробей. Ввод в любом из полей может быть положительным или отрицательным числом.

Калькулятор упрощенных дробей
Этот инструмент можно использовать для упрощения смешанных фракций. Здесь ввод в поле целого числа может быть положительным или отрицательным.

Калькулятор десятичных дробей
Калькулятор переводит десятичные числа в дроби. Предоставленный здесь ввод может быть положительным или отрицательным числом.

Калькулятор дробей в десятичную
Калькулятор переводит дроби в десятичные числа.Ввод в любом из полей может быть положительным или отрицательным числом.

Калькулятор дробей большого числа
Этот калькулятор можно использовать для вычислений с использованием дробей с очень большими целыми числами.

Что такое дроби?
Дроби используются для обозначения части целого. Дроби обычно имеют формат a / b. Здесь число перед косой чертой называется числителем, а число после косой черты — знаменателем.Знаменатель представляет собой целое, а числитель представляет количество равных частей целого.

Например: Предположим, все это представляет собой лоток с яйцами с 12 яйцами в нем. Когда лоток заполнен, его можно представить дробью 12/12. Теперь, если вы достанете 5 яиц из лотка, то вынутая часть будет представлена ​​дробью 5/12. Тогда как оставшаяся в лотке часть будет представлена ​​дробью 7/12.

В общем, существует три типа фракций, которые указаны ниже:

  1. Правильные дроби: В этом виде дроби числитель меньше, чем знаменатель.Такие дроби, как 3/7, 2/9 и т. Д., Можно назвать собственными дробями.
  2. Неправильные дроби: Для этих дробей значение числителя больше или равно знаменателю. Например, 9/5, 12/12, 267/23 и т. Д. — все неправильные дроби.
  3. Смешанные дроби: Эти дроби представляют собой еще один способ представления неправильных дробей. Их также можно назвать упрощенной версией неправильных дробей. Например, неправильная дробь 19/4 может быть представлена ​​как смешанная дробь 4 ¾.

Дроби могут быть положительными или отрицательными числами. Знаменатель дроби не может быть равен нулю (0).

Что такое калькулятор дробей?
Приведенные выше калькуляторы дробей представляют собой цифровые инструменты, которые можно использовать для математических вычислений с использованием дробей. Эти калькуляторы можно использовать для сложения, вычитания, умножения или деления правильных, неправильных или смешанных дробей. Существуют также инструменты, которые можно использовать для упрощения смешанных дробей или преобразования десятичных чисел в дроби и наоборот.

Как работают эти калькуляторы дробей?
Вышеупомянутые калькуляторы дробей, являясь онлайн-инструментами, могут быть легко доступны с таких устройств, как смартфон или ноутбук, с подключением к Интернету. Ниже приводится краткое описание того, как работает каждый из этих калькуляторов:

Калькулятор правильных / неправильных дробей
Этот калькулятор может выполнять вычисления с использованием правильных и неправильных дробей. В этом калькуляторе есть два раздела, в которых можно ввести требуемые дроби.В каждом из этих разделов есть отдельное поле для ввода числителя и знаменателя дроби. Входные данные в любом из этих полей могут быть как положительными, так и отрицательными. Между обоими разделами есть поле с раскрывающимся меню, в котором перечислены все математические функции, которые могут применяться между обеими дробями. Пользователи могут выбрать применение сложения (+), вычитания (-), умножения (x) или деления (/) из этого меню. Введите требуемый ввод и нажмите кнопку «Рассчитать», чтобы просмотреть результат.

Отображение выходных данных: На странице результатов этого калькулятора выходные данные представлены как в дробной, так и в десятичной форме. Шаги, участвующие в вычислении, отображаются прямо под результатом. Кроме того, под ним находится кнопка «+ Показать дальнейшее объяснение», щелкнув по которой, можно просмотреть объяснение этапов расчета.

Чтобы произвести новый расчет, нажмите кнопку «Очистить» и введите новые данные.

Калькулятор смешанных чисел
Калькулятор предназначен для вычислений смешанных дробей.Здесь есть два поля для ввода дробей. Чтобы ввести данные, пользователям сначала нужно ввести целое число, затем поставить пробел, затем ввести числитель, затем косую черту (/) и, наконец, ввести знаменатель. Вводимые данные в любом из полей могут быть положительными или отрицательными. Между полями, предназначенными для ввода дробей, есть поле с раскрывающимся меню, откуда требуется математическая функция — сложение (+), вычитание (-), умножение (x) или деление (/) — можно выбрать.Введите требуемый ввод и нажмите кнопку «Рассчитать», чтобы просмотреть результат.

Отображение выходных данных: На странице результатов этого калькулятора выходные данные представлены как в дробной, так и в десятичной форме. Шаги, участвующие в вычислении, отображаются прямо под результатом. Кроме того, под ним находится кнопка «+ Показать дальнейшее объяснение», щелкнув по которой, можно просмотреть объяснение этапов расчета.

Чтобы произвести новый расчет, нажмите кнопку «Очистить» и введите новые данные.

Калькулятор упрощенных дробей
Этот калькулятор может использоваться для упрощения смешанных дробей. В упрощенном калькуляторе дробей есть три поля. Один для ввода целого числа, один для ввода числителя и третий для ввода знаменателя смешанной дроби, которая должна быть предоставлена ​​в качестве входных данных. Ввод, предусмотренный в поле для ввода целого числа, может быть положительным или отрицательным. Введите соответствующую информацию во все поля и нажмите кнопку «Рассчитать», чтобы просмотреть результат.

Отображение выходных данных: На странице результатов этого калькулятора выходные данные представлены как в дробной, так и в десятичной форме. Шаги, участвующие в вычислении, отображаются прямо под результатом.

Чтобы произвести новый расчет, нажмите кнопку «Очистить» и введите новые данные.

Калькулятор десятичных дробей
Калькулятор переводит десятичные числа в дроби. Введите необходимое десятичное число в поле ввода и нажмите кнопку «Рассчитать», чтобы просмотреть результат.Предоставляемые входные данные могут быть как положительными, так и отрицательными.

Показан результат: на странице результатов этого калькулятора результат выражен в виде дроби. Шаги, участвующие в вычислении, отображаются прямо под результатом.

Чтобы произвести новый расчет, нажмите кнопку «Очистить» и введите новые данные.

Калькулятор дробей в десятичную
Калькулятор переводит дроби в десятичные числа. Здесь есть два поля, в которые можно ввести требуемый числитель и знаменатель дроби.Предоставляемые входные данные могут быть как положительными, так и отрицательными. Введите необходимые данные и нажмите кнопку «Рассчитать», чтобы просмотреть результат.

Показаны выходные данные: На странице результатов этого калькулятора выходные данные представлены в виде десятичных чисел.

Чтобы произвести новый расчет, нажмите кнопку «Очистить» и введите новые данные.

Калькулятор дробей большого числа
Этот калькулятор можно использовать для вычисления дробей с очень большими целыми числами. Здесь есть два раздела для ввода дробей, каждый с числителем и полем знаменателя.Между обоими разделами есть поле с раскрывающимся меню, которое можно использовать для выбора соответствующей математической функции — сложения (+), вычитания (-), умножения (x) или деления (/) — для применяться между фракциями. Введите все необходимые данные и нажмите кнопку «Рассчитать», чтобы просмотреть результат.

Показан результат: на странице результатов этого калькулятора результат выражен в виде дроби.

Чтобы произвести новый расчет, нажмите кнопку «Очистить» и введите новые данные.

Сложные дроби — объяснения и примеры

Дробь состоит из двух частей: числителя и знаменателя; число над линией — числитель, а число под линией — знаменатель. Линия или косая черта, разделяющие числитель и знаменатель дроби, обозначают деление. Он используется для представления того, сколько частей у нас есть из общего количества частей.

Типы числителя и знаменателя определяют тип дроби.Правильная дробь — это та, где числитель больше знаменателя, а неправильная дробь — это та, у которой знаменатель больше числителя. Существует еще один тип дроби, называемый комплексной дробью, который мы увидим ниже.

Что такое сложная фракция?

Сложная дробь может быть определена как дробь, в которой знаменатель и числитель или оба содержат дроби. Сложная дробь, содержащая переменную, называется сложным рациональным выражением. Например,

3 / (1/2) — это сложная дробь, в которой 3 — числитель, а 1/2 — знаменатель.

(3/7) / 9 также является сложной дробью с 3/7 и 9 в числителе и знаменателе соответственно.

(3/4) / (9/10) — еще одна сложная дробь с 3/4 в числителе и 9/10 в знаменателе.

Как упростить сложные дроби?

Есть два метода, используемых для упрощения сложных дробей.

Давайте рассмотрим некоторые ключевые шаги для каждого метода упрощения:

Метод 1

В этом методе упрощения сложных дробей следующие процедуры:

  • Вычислить одну дробь как в знаменателе, так и в числителе.
  • Воспользуйтесь правилом деления, умножив верхнюю часть дроби на обратную величину нижней части.
  • Упростите дробь с наименьшими возможными членами.

Метод 2

Это самый простой метод упрощения сложных дробей. Вот шаги этого метода:

  • Начните с нахождения наименьшего общего кратного знаменателя в комплексных дробях,
  • Умножьте числитель и знаменатель комплексной дроби на это L.СМ.
  • Упростите результат до минимально возможных значений.

Пример 1

Кельвин разрезает 3/4 метра проволоки на более мелкие кусочки. Если каждый кусок проволоки составляет 1/12 проволоки, сколько частей проволоки может разрезать Кельвин?

Раствор

Количество следовой смеси в каждом мешке = 1/12 фунта

Дано:

Каждый мешок вмещает 1/12 фунта следовой смеси.

Тогда общая длина провода составляет 3/4 метра.

Количество частей, которые можно разрезать:

= (3/4) / (1/12)

Вышеприведенное выражение представляет собой сложную дробь, поэтому измените деление как умножение и возьмите дробь, обратную дроби в знаменателе. .

= 3/4 x 12/1

Упростить.

= (3 x 12) / (4 x 1)

= (3 x 3) / (1 x 1)

= 9/1

= 9

Итак, Кельвин отрезал 9 кусков проволоки.

Пример 2

Кормушка для кур вмещает 9/10 чашки зерна.Если кормушка наполняется черпаком, который вмещает только 3/10 стакана зерна. Сколько ложек чашек можно заполнить кормушкой для кур?

Раствор

Вместимость кормушки для цыплят = 9/10 чашки зерен

Учитывая, что 3/10 чашки зерен заполняет кормушку, количество ложек можно найти, разделив 9/10 на 3 / 10.

Анализ этого вопроса дает сложные дроби:

(9/10) / (3/10)

Задача решается путем нахождения обратной величины знаменателя, в данном случае 3/10.

= 9/10 x 10/3

Упростить.

= (9 x 10) / (10 x 3)

= (3 x 1) / (1 x 1)

= 3/1

= 3

Таким образом, общее количество совков = 3

Пример 3

В пекарне используется 1/6 мешка муки для выпечки в партии тортов. В определенный день пекарня использовала 1/2 мешка хлебопекарной муки. Подсчитайте партии тортов, произведенных пекарней в этот день.

Раствор

Количество пекарного пола, использованного для изготовления партии пирожных, = 1/6 пакета

Если пекарня использовала 1/2 мешка хлебопекарной муки в тот день.

Затем количество партий тортов, произведенных пекарней в день.

= (1/2) / (1/6)

В этом случае приведенное выше выражение представляет собой сложную дробь с 1/2 в числителе и 1/6 в знаменателе.

Следовательно, возьмите обратную величину знаменателя

= 1/2 x 6/1

Упростите.

= (1 x 6) / (2 x 1)

= (1 x 3) / (1 x 1)

= 3/1

= 3

Таким образом, количество партий тортов, произведенных the bakery = 3

Пример 4

Упростим сложную дробь: (2 1 / 4 ) / (3 3 / 5 )

Решение

Начать с преобразования сверху и снизу на неправильные дроби:

2 1 / 4 = 9/4

3 3 / 5 = 18/5

Следовательно, имеем:

(9/4) / (18/5)

Найдите обратную величину знаменателя и измените оператор:

9/4 x 5/18

Умножьте числители и знаменатели отдельно:

= 45/72

Числитель и знаменатель числа дробь имеет общий множитель 9, упростите дробь до наименьших возможных членов.

45/72 = 5/8

Ответ = 58.

Пример 5

Вычислите возможное значение x в следующей сложной дроби.

(x / 10) / (x / 4) = 8/5

Решение

Начните с умножения числителя комплексной дроби на обратную величину ее знаменателя.

x / 10 * 4 / x = x / 10 * x / 4 = x 2 /240

Теперь у нас есть уравнение:

X 2 /240 = 85

Умножаем обе стороны на 40, чтобы получить:

X 2 = 64

Таким образом, найдя квадратный корень из обеих частей, вы получите:

X = ± 8

Следовательно, — 8 — единственное возможное значение комплексной дроби.

Предыдущий урок | Главная страница | Следующий урок

PX_MathsContent_BK_FractionsInSchool_02_CH.indd

% PDF-1.3 % 1 0 объект >] / Pages 3 0 R / Type / Catalog / ViewerPreferences >>> эндобдж 2 0 obj > поток 2014-05-13T09: 30: 22 + 01: 002014-05-13T09: 30: 43 + 01: 002014-05-13T09: 30: 43 + 01: 00Adobe InDesign CS6 (Macintosh) uuid: 9463f85d-05c8-f949- a39a-cfb64b5e9801xmp.did: 5A57D0133C2068118083BB3DC9783198xmp.id: 95A90B3E082068118083F5EB4521DE88proof: pdf1xmp.iid: E08B16713C2068118083F8BBEBB3C2DAxmp.did: 36B948B7282068118C14FAF5E2A9E454xmp.did: 5A57D0133C2068118083BB3DC9783198по умолчанию

  • преобразовано из приложения / 30-05-22Dindesign в CS: 01 / 30-05: Indfesto6 для Mac application / pdf
  • PX_MathsContent_BK_FractionsInSchool_02_CH.indd
  • Библиотека Adobe PDF 10.0.1FalsePDF / X-1: 2001PDF / X-1: 2001PDF / X-1a: 2001 конечный поток эндобдж 3 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 25 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Свойства >>> / TrimBox [0.0 0,0 595,276 841,89] / Тип / Страница >> эндобдж 26 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / TrimBox [0.0 0.0 595.276 841.89] / Type / Page >> эндобдж 27 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Свойства >>> / TrimBox [0.0 0.0 595.276 841.89] / Type / Page >> эндобдж 28 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / TrimBox [0.0 0.0 595.276 841.89] / Type / Page >> эндобдж 29 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / TrimBox [0.0 0,0 595,276 841,89] / Тип / Страница >> эндобдж 30 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0.0 595.276 841.89] / Type / Page >> эндобдж 77 0 объект > поток HW] o} i8 «[C [, [neͯ9ýҒWV / o = PiI \ ‘ވ A \ 01l / ~ z $ H7RsQv1P.B9EcKS» & [> J + Q> V] ] ɔޮޕ LT / {ק i {rƸ @ | Z> a`zy8 耶

    ! HgvBiWiҝ \ פ. Hɋvn% xy NH ծ X.h > o, \, E Ժ svJ;]. Y`4k% b +]

    Двухшаговый калькулятор уравнений

    Наших пользователей:

    Было трудно вернуться в школу взрослым, особенно когда мне пришлось переделывать математические курсы, потому что с момента выпуска прошло два десятилетия.Мне очень нужна была помощь, и, к счастью, ваш продукт доставлен. Я не могу вас отблагодарить.
    Том Кэрол, Нью-Йорк

    Программой я пока вполне доволен
    Tyson Wayne, SD

    Мне очень нравится макет программного обеспечения и удобство использования. Я загрузил его на свой детский компьютер, чтобы они могли использовать его для выполнения домашних заданий.
    Маргрет Дикс, AL


    Студенты, решающие всевозможные алгебры, узнают, что наше программное обеспечение спасает жизнь.Вот поисковые фразы, которые использовали сегодняшние поисковики, чтобы найти наш сайт. Можете ли вы найти среди них свою?


    Поисковые фразы, использованные на 01.01.2013:
    • «квадратное уравнение видео»
    • программа решения радикальных уравнений
    • бесплатный калькулятор для решения 3-х классов по математике
    • решенных задач на листах Excel в градусах
    • примерный план урока по сложению и вычитанию многочленов по алгебре I
    • вычитание трехчленных дробей с переменными
    • определение биномов для детей из алгебры
    • тестовые модели
    • математический калькулятор casio для использования
    • лист умножения и деления комплексных чисел
    • Математика для средней школы с Pizzazz Book C Ответы
    • logaritmo texas ti 89
    • программа решения квадратных уравнений на множители
    • prentice hall algebra 1 справка
    • Как найти наименьшее общее умножение в алгебре
    • математических формул в процентах
    • онлайн-программа для решения радикальных уравнений с квадратным корнем
    • лист сложения, вычитания, деления, умножения дробей с разными знаменателями
    • как сделать дробь на ti83
    • Математические решатели с бесплатной геометрией
    • бесплатных листов для обзора листов экспонентов
    • рабочий лист по алгебре 2 ответы glencoe
    • Какая самая сложная математическая задача
    • Макдугал, ключ для ответов на вопросы маленькой предалгебры
    • Акт практических упражнений бесплатные рабочие листы
    • экспоненциальное выражение квадратные корни
    • рабочих листов для шестого класса
    • полином школьной математики
    • Рабочий лист в экспоненциальной системе счисления
    • решить уравнение для ДИАПАЗОНА ЧИСЕЛ
    • TI Calculator скачать бесплатно
    • лист пропорций
    • Математический курс Макдугала Литтела 1 ответы
    • «Показательная деятельность»
    • Задача алгебры
    • бесплатные рабочие листы задач со словами teks
    • правил умножения уравнений на дроби
    • практические задачи на умножение и деление радикальных выражений
    • завершение квадрата для окружностей, парабол, гипербол, эллипсов
    • задача слова prealgrebra
    • бесплатный образец работы по математике 11 класса
    • АБСОЛЮТНАЯ ЗНАЧЕНИЕ КВАДРАТНОГО КОРНЯ 3 МИНУС 3
    • как решать радикальные выражения
    • пример общего теста на пригодность в средней школе стр.
    • геометрия для печати первый класс
    • колледж алгебры 10-е издание
    • Перестановка формул для чайников
    • рабочая тетрадь prentice hall pre-algebra, калифорнийское издание
    • «процент» «бесплатный лист»
    • научитесь математике по линии
    • упростить радикальные выражения перед добавлением или вычитанием
    • решить одновременно два обыкновенных дифференциальных уравнения
    • рабочие листы по алгебре 1
    • Решите квадратное уравнение графическим методом
    • репетитор-сша.com рабочий лист наклон ответы
    • рассчитать gcd
    • t183 программа для решения уравнений
    • добавляем
    • Математика, комбинации, игрок и пятна в шестом классе
    • перестановка и комбинация для чайников
    • пример квадратной задачи
    • калькулятор для перевода дробей в десятичные
    • решить нелинейное дифференциальное уравнение с помощью MATLAB
    • Таблица формул для 7-го класса
    • как использовать t1-83 / 84
    • математических задач
    • Графический калькулятор ввода четырехугольной формулы
    • gcse foundation — рабочие листы по алгебре
    • Dugopolski Solution Manual for Precalculus загрузить
    • Руководство по решению алгебры 2 McDougal Littell
    • таблица основных переменных уравнений
    • алгебраических неравенств с несколькими переменными
    • mcdougal littell геометрические ноты
    • до алгебры с pizzazz! cr
    • математическая справка с перестановками
    • листов для полиномиальной алгебраической дроби для печати
    • suntex первые в математике читы
    • Важные формулы по математике 10-е место
    • программа задач по алгебре
    • бесплатная распечатка математического анализа веселое занятие
    • борется с алгеброй
    • литтел макдугал алгебра 2 ответ
    • первый класс математики
    • Калькулятор разложения по квадратному уравнению
    • Форма пересечения откосов

    Калькулятор умножения дробей — Calculator Academy

    Введите любые две или три дроби в калькулятор умножения дробей.Калькулятор оценит умножение дробей и отобразит упрощенное значение результата.

    Формула умножения дробей

    Следующее уравнение используется для умножения двух дробей.

    X / Y * A / B = X * A / GCD / Y * B / GCD

    • Где X / Y — первая дробь
    • A / B — вторая дробь
    • X * A / Y * B — результирующее значение
    • GCD —

    Эту формулу можно расширить до любого количества дробей .Процесс все тот же. Умножьте все числители и все знаменатели, а затем разделите на НОД двух результатов.

    Определение умножения дробей

    Умножение дробей — это процесс умножения двух или более дробей для получения новой дроби. Эта новая дробь обычно упрощается с использованием наибольшего общего знаменателя новых верхних и нижних чисел. Умножение дробей иногда называют временными дробями, хотя это неправильное слово.

    Пример умножения дробей

    Как умножать дроби?

    1. Сначала определите две дроби

      Определите значения двух дробей, над которыми вы хотите выполнить операцию умножения. В этом примере две дроби — 4/5 и 2/3.

    2. Затем умножьте числители

      4 * 2 = 8.

    3. Затем умножьте знаменатели

      5 * 3 = 15.

    4. Объединение результатов

      Объедините результаты шагов 1 и 2, чтобы создать новую фракцию. 15.08.

    5. Упростить

      Упростите результат, используя НОД числителя и знаменателя. В этом случае наибольший общий знаменатель равен 1, поэтому результат все равно 8/15.

    Как умножить 3 дроби вместе?

    Следующая задача — это пример того, как умножить 3 дроби вместе. В этом примере задачи конкретно рассматривается умножение дробей с разными знаменателями.

    1. Определите первую дробь X / Y.В этом случае первая дробь оказывается 1/3.
    2. Затем определите вторую дробь W / Z. Это определено как 1/5.
    3. Затем определите третью и последнюю дробь. Последнее значение — 20/30.
    4. Затем умножьте все числители и знаменатели. Это дает долю 20/450.
    5. Наконец, разделите результат на наибольший общий знаменатель числителя и знаменателя, который равен 10. Итак, 20/10 / 450/10 = 2/45 .

    Вышеописанный метод можно использовать для любого количества фракций.Например, при рассмотрении всего двух дробей просто умножьте значения числителя и знаменателя каждой, а затем разделите на НОД. Это также можно сделать с помощью калькулятора выше. Просто введите только значения первых двух дробей, а для третьей оставьте 1 больше 1.

    Дополнительная информация

    Как умножить дроби с разными знаменателями? Умножение дробей с разными знаменателями или разными нижними числами, как это иногда называют, ничем не отличается от умножения дробей с тем же знаменателем.Формула и процесс остались прежними, как показано выше.

    Как проще всего умножать дроби? Самый простой способ умножить дроби — использовать калькулятор, подобный приведенному выше. Второй самый простой способ — использовать формулу X / Y * A / B = X * A / GCD / Y * B / GCD, где X / Y и A / B — разные дроби. Это более подробно рассматривается в разделе формул выше.

    Калькулятор множественных дробей

    Наших пользователей:

    Проведя бесчисленные часы ночь за ночью, пытаясь понять мою домашнюю работу, я нашел Алгебратор.Большинство других программ просто дают вам ответ, что не помогло мне, когда дошло время тестирования. Алгебратор помогал мне шаг за шагом решать каждую проблему. Спасибо!
    Дэниел Свон, IA

    Наблюдать за моей дочерью, которая всего два года назад так разочаровалась в алгебре, принимая высшие награды в своей школе за выдающиеся академические достижения в математике, было, несомненно, одним из самых гордых моментов в моей жизни. Спасибо, Алгебратор!
    Сет Лор, ИА

    Я был просто очарован, увидев человеческие шаги ко всем задачам, в которые я вошел.Замечательный!
    Майкл, Огайо

    Мне нравится, что его можно использовать как пошаговые инструкции, так и как способ проверки работы учащихся.
    Блейн Милхэм, MH


    Студенты, решающие всевозможные алгебры, узнают, что наше программное обеспечение спасает жизнь. Вот поисковые фразы, которые использовали сегодняшние поисковики, чтобы найти наш сайт. Можете ли вы найти среди них свою?


    Поисковые фразы, использованные на 13.11.2010:
    • бесплатные рабочие листы предварительного тестирования GED
    • сложение и вычитание рациональных выражений по TI-89
    • как решить линейное уравнение в matlab
    • как рассчитать время удвоения на ti 89
    • Калькулятор упрощающих корней
    • GED учебники по математике с рабочими листами
    • Калькулятор исключения уравнений
    • алгебра с образцами пиццы
    • сложить или вычесть дроби для 6 класса
    • Полиномиальные выражения в Excel
    • самая сложная математическая задача в мире
    • решение двухэтапных уравнений практические тесты
    • как решить в форме вершины
    • бесплатных тестов по математике 7 год
    • hwo для преобразования двоичного числа в восьмеричное
    • Экзамены по математике Glencoe
    • «ти-89» тейлор «но линейл»
    • решатель уравнений линий
    • программа для решения обратных уравнений
    • Практические задачи по алгебре в 9 классе
    • математический решатель
    • калькулятор + математика + факторинг
    • Задачи по математике для 5 класса: распечатки
    • бесплатных распечатываемых листов симметрии
    • бесплатный рабочий лист кумона
    • викторина по координатной сетке
    • решатель тригонометрических тождеств
    • решатель биномиального разложения
    • правила сложения и вычитания дробей
    • Калькулятор уравнения четвертой степени
    • как решать задачи построения графиков
    • бесплатных трюков для изучения математики в Индии к банковским экзаменам
    • примеров вопросов по алгебре
    • системных уравнений ks3
    • бесплатных листов + добавление положительных и отрицательных целых чисел
    • Калькулятор биномов на разложение на простые множители
    • Математический справочник класса
    • калькулятор для решения относительно x с использованием дробей
    • листов математической викторины для печати бесплатно
    • Фракционный зачет 4-го класса
    • «британский метод» факторинга
    • алгебра переменная игра
    • десятичный квадрат
    • образец эрб экзамен 8 класс
    • Рабочие листы по математике для 5 класса
    • Рабочий лист замены математики в средней школе
    • формула elipse
    • практика Ерб экзамен 8 класс
    • самое сложное математическое уравнение в мире
    • набор задач предалгебры 85 задач из учебника
    • поиск уклона по ТИ-83
    • Окружность 6 класс рабочий лист tp распечатать бесплатно \
    • нахождение общего знаменателя выражения
    • Программа на C ++, которая инвертирует целые числа
    • Калькулятор для упрощения алгебраических выражений
    • ТАКС для 5 класса вопросов вероятности
    • gce eoct
    • Java-код для решения полиномиальной арифметики
    • Формула среднего наклона
    • алгебра Меррилла 1
    • калькулятор поиска наименьшего общего знаменателя
    • рабочих листов с бесплатными линейными графиками для детей
    • решение задач машиностроения численным методом пополам
    • бесплатноСравнение и порядок десятичных знаков рабочих листов
    • ti-89 направлений десятичный
    • решать алгебру бесплатно
    • умножение десятичных знаков без калькулятора
    • бесплатных рабочих листов по предварительной алгебре для 6 класса
    • бесплатный онлайн-тест по естествознанию + MCQ + 5 класс + силы + электричество
    • Matlab решает нелинейное уравнение
    • алгебра с изюминкой по творческим публикациям ответы
    • веб-сайты, решающие математические комбинации
    • история времени, matlab, kutta
    • «Развивающие игры» + ссылки.



    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *