Содержание

Задачи и примеры на все действия с обыкновенными дробями. Сложные выражения с дробями

Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия — в том же порядке, как и для обычных чисел. А именно:

  1. Сначала выполняется возведение в степень — избавьтесь от всех выражений, содержащих показатели;
  2. Затем — деление и умножение;
  3. Последним шагом выполняется сложение и вычитание.

Разумеется, если в выражении присутствуют скобки, порядок действий изменяется — все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем — деление. Заметим, что 14 = 7 · 2 . Тогда:

Наконец, считаем третий пример. Здесь есть скобки и степень — их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно — знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

Многоэтажные дроби

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

Задача. Переведите многоэтажные дроби в обычные:

В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

В последнем примере перед окончательным умножением дроби были сокращены.

Специфика работы с многоэтажными дробями

В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

  1. В числителе стоит отдельное число 7, а в знаменателе — дробь 12/5;
  2. В числителе стоит дробь 7/12, а в знаменателе — отдельное число 5.

Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно — в несколько раз.

Если следовать этому правилу, то приведенные выше дроби надо записать так:

Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок — пара примеров, где действительно возникают многоэтажные дроби:

Задача. Найдите значения выражений:

Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем — частное.

Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

Числителем, а то, на которое делят — знаменателем.

Чтобы записать дробь, напишите сначала ее числитель, затем проведите под этим числом горизонтальную черту, а под чертой напишите знаменатель. Горизонтальная , разделяющая числитель и знаменатель, называется дробной чертой. Иногда ее изображают в виде наклонной «/» или «∕». При этом, числитель записывается слева от черты, а знаменатель справа. Так, например, дробь «две третьих» запишется как 2/3. Для наглядности числитель обычно пишут в верхней части строки, а знаменатель — в нижней, то есть вместо 2/3 можно встретить: ⅔.

Чтобы рассчитать произведение дробей, умножьте сначала числитель одной дроби на числитель другой. Запишите результат в числитель новой дроби . После этого перемножьте и знаменатели. Итоговое значение укажите в новой дроби . Например, 1/3 ? 1/5 = 1/15 (1 ? 1 = 1; 3 ? 5 = 15).

Чтобы поделить одну дробь на другую, умножьте сначала числитель первой на знаменатель второй. То же произведите и со второй дробью (делителем). Или перед выполнением всех действий сначала «переверните» делитель, если вам так удобнее: на месте числителя должен оказаться знаменатель. После этого умножьте знаменатель делимого на новый знаменатель делителя и перемножьте числители. Например, 1/3: 1/5 = 5/3 = 1 2/3 (1 ? 5 = 5; 3 ? 1 = 3).

Источники:

  • Основные задачи на дроби

Дробные числа позволяют выражать в разном виде точное значение величины. С дробями можно выполнять те же математические операции, что и с целыми числами: вычитание, сложение, умножение и деление. Чтобы научиться решать дроби , надо помнить о некоторых их особенностях. Они зависят от вида дроби , наличия целой части, общего знаменателя. Некоторые арифметические действия после выполнения требуют сокращения дробной части результата.

Вам понадобится

Инструкция

Внимательно посмотрите на числа. Если среди дробей есть десятичные и непрвильные, иногда удобнее вначале выполнить действия с десятичными, а затем перевести их в неправильный вид. Можете перевести дроби в такой вид изначально, записав значение после запятой в числитель и поставив 10 в знаменатель. При необходимости сократите дробь, разделив числа выше и ниже на один делитель. Дроби, в которых выделяется целая часть, приведите к неправильному виду, умножив её на знаменатель и прибавив к результату числитель. Данное значения станет новым числителем

дроби . Чтобы выделить целую часть из первоначально неправильной дроби , надо поделить числитель на знаменатель. Целый результат записать от дроби . А остаток от деления станет новым числителем, знаменатель дроби при этом не меняется. Для дробей с целой частью возможно выполнение действий отдельно сначала для целой, а затем для дробной частей. Например, сумма 1 2/3 и 2 ¾ может быть вычислена :
— Переведение дробей в неправильный вид:
— 1 2/3 + 2 ¾ = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;
— Суммирование отдельно целых и дробных частей слагаемых:
— 1 2/3 + 2 ¾ = (1+2) + (2/3 + ¾) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5/12.

Перепишите их через разделитель «:» и продолжите обычное деление.

Для получения конечного результата полученную дробь сократите, разделив числитель и знаменатель на одно целое число, наибольшее возможное в данном случае. При этом выше и ниже черты должны быть целые числа.

Обратите внимание

Не выполняйте арифметические действия с дробями, знаменатели которых отличаются. Подберите такое число, чтобы при умножении на него числителя и знаменателя каждой дроби в результате знаменатели обеих дробей были равны.

Полезный совет

При записи дробных чисел делимое пишется над чертой. Эта величина обозначается как числитель дроби. Под чертой записывается делитель, или знаменатель, дроби. Например, полтора килограмма риса в виде дроби запишется следующим образом: 1 ½ кг риса. Если знаменатель дроби равен 10, такую дробь называют десятичной. При этом числитель (делимое) пишется справа от целой части через запятую: 1,5 кг риса. Для удобства вычислений такую дробь всегда можно записать в неправильном виде: 1 2/10 кг картофеля. Для упрощения можно сократить значения числителя и знаменателя, поделив их на одно целое число. В данном примере возможно деление на 2. В результате получится 1 1/5 кг картофеля. Удостоверьтесь, что числа, с которыми вы собираетесь выполнять арифметические действия, представлены в одном виде.

Дробь — форма представления числа в математике. Дробная черта обозначает операцию деления. Числителем дроби называется делимое, а знаменателем — делитель. Например, в дроби числителем является число 5, а знаменателем — 7.

Правильной называется дробь, у которой модуль числителя больше модуля знаменателя. Если дробь является правильной, то модуль её значения всегда меньше 1. Все остальные дроби являются неправильными .

Дробь называют смешанной , если она записана как целое число и дробь. Это то же самое, что и сумма этого числа и дроби:

Основное свойство дроби

Если числитель и знаменатель дроби умножить на одно и то же число, то значение дроби не изменится, то есть, например,

Приведение дробей к общему знаменателю

Чтобы привести две дроби к общему знаменателю, нужно:

  1. Числитель первой дроби умножить на знаменатель второй
  2. Числитель второй дроби умножить на знаменатель первой
  3. Знаменатели обеих дробей заменить на их произведение

Действия с дробями

Сложение. Чтобы сложить две дроби, нужно

  1. Сложить новые числители обеих дробей, а знаменатель оставить без изменений

Пример:

Вычитание. Чтобы вычесть одну дробь из другой, нужно

  1. Привести дроби к общему знаменателю
  2. Вычесть из числителя первой дроби числитель второй, а знаменатель оставить без изменений

Пример:

Умножение. Чтобы умножить одну дробь на другую, следует перемножить их числители и знаменатели:

Деление. Чтобы разделить одну дробь на другую, следует числитель первой дроби умножить на знаменатель второй, а знаменатель первой дроби умножить на числитель второй:

Действия с дробями. В этой статье разберём примеры, всё подробно с пояснениями. Рассматривать будем обыкновенные дроби. В дальнейшем разберём и десятичные. Рекомендую посмотреть весь и изучать последовательно.

1. Сумма дробей, разность дробей.

Правило: при сложении дробей с равными знаменателями, в результате получаем дробь – знаменатель которой остаётся тот же, а числитель её будет равен сумме числителей дробей.

Правило: при вычислении разности дробей с одинаковыми знаменателями получаем дробь – знаменатель остаётся тот же, а из числителя первой дроби вычитается числитель второй.

Формальная запись суммы и разности дробей с равными знаменателями:


Примеры (1):


Понятно, что когда даны обыкновенные дроби, то всё просто, а если смешанные? Ничего сложного…

Вариант 1 – можно перевести их в обыкновенные и далее вычислять.

Вариант 2 – можно отдельно «работать» с целой и дробной частью.

Примеры (2):


Ещё:

А если будет дана разность двух смешанных дробей и числитель первой дроби будет меньше числителя второй? Тоже можно действовать двумя способами.

Примеры (3):

*Перевели в обыкновенные дроби, вычислили разность, перевели полученную неправильную дробь в смешанную.


*Разбили на целые и дробные части, получили тройку, далее представили 3 как сумму 2 и 1, при чём единицу представили как 11/11, далее нашли разность 11/11 и 7/11 и вычислили результат. Смысл изложенных преобразований заключается в том, чтобы взять (выделить) единицу и представить её в виде дроби с нужным нам знаменателем, далее от этой дроби мы уже можем вычесть другую.

Ещё пример:


Вывод: имеется универсальный подход – для того, чтобы вычислить сумму (разность) смешанных дробей с равными знаменателями их всегда можно перевести в неправильные, далее выполнить необходимое действие. После этого если в результате получаем неправильную дробь переводим её в смешанную.

Выше мы рассмотрели примеры с дробями, у которых равные знаменатели. А если знаменатели будут отличаться? В этом случае дроби приводятся к одному знаменателю и выполняется указанное действие. Для изменения (преобразования) дроби используется основное свойство дроби.

Рассмотрим простые примеры:

В данных примерах мы сразу видим каким образом можно преобразовать одну из дробей, чтобы получить равные знаменатели.

Если обозначить способы приведения дробей к одному знаменателю, то этот назовём СПОСОБ ПЕРВЫЙ .

То есть, сразу при «оценке» дроби нужно прикинуть сработает ли такой подход – проверяем делится ли больший знаменатель на меньший. И если делится, то выполняем преобразование — домножаем числитель и знаменатель так чтобы у обеих дробей знаменатели стали равными.

Теперь посмотрите на эти примеры:

К ним указанный подход не применим. Существуют ещё способы приведения дробей к общему знаменателю, рассмотрим их.

Способ ВТОРОЙ .

Умножаем числитель и знаменатель первой дроби на знаменатель второй, а числитель и знаменатель второй дроби на знаменатель первой:

*Фактически мы приводим дроби к виду, когда знаменатели становятся равными. Далее используем правило сложения робей с равными знаменателями.

Пример:

*Данный способ можно назвать универсальным, и он работает всегда. Единственный минус в том, что после вычислений может получится дробь которую необходимо будет ещё сократить.

Рассмотрим пример:

Видно что числитель и знаменатель делится на 5:

Способ ТРЕТИЙ.

Необходимо найти наименьшее общее кратное (НОК) знаменателей. Это и будет общий знаменатель. Что это за число такое? Это наименьшее натуральное число, которое делится на каждое из чисел.

Посмотрите, вот два числа: 3 и 4, есть множество чисел, которые делятся на них – это 12, 24, 36, … Наименьшее из них 12. Или 6 и 15, на них делятся 30, 60, 90 …. Наименьшее 30. Вопрос – а как определить это самое наименьшее общее кратное?

Имеется чёткий алгоритм, но часто это можно сделать и сразу без вычислений. Например, по указанным выше примерам (3 и 4, 6 и 15) никакого алгоритма не надо, мы взяли большие числа (4 и 15) увеличили их в два раза и увидели, что они делятся на второе число, но пары чисел могут быть и другими, например 51 и 119.

Алгоритм. Для того, чтобы определить наименьшее общее кратное нескольких чисел, необходимо:

— разложить каждое из чисел на ПРОСТЫЕ множители

— выписать разложение БОЛЬШЕГО из них

— умножить его на НЕДОСТАЮЩИЕ множители других чисел

Рассмотрим примеры:

50 и 60 => 50 = 2∙5∙5 60 = 2∙2∙3∙5

в разложении большего числа не хватает одной пятёрки

=> НОК(50,60) = 2∙2∙3∙5∙5 = 300

48 и 72 => 48 = 2∙2∙2∙2∙3 72 = 2∙2∙2∙3∙3

в разложении большего числа не хватает двойки и тройки

=> НОК(48,72) = 2∙2∙2∙2∙3∙3 = 144

* Наименьшее общее кратное двух простых чисел равно их произведению

Вопрос! А чем полезно нахождение наименьшего общего кратного, ведь можно пользоваться вторым способом и полученную дробь просто сократить? Да, можно, но это не всегда удобно. Посмотрите, какой получится знаменатель для чисел 48 и 72, если их просто перемножить 48∙72 = 3456. Согласитесь, что приятнее работать с меньшими числами.

Рассмотрим примеры:

*51 = 3∙17 119 = 7∙17

в разложении большего числа не хватает тройки

=> НОК(51,119) = 3∙7∙17

А теперь применим первый способ:

*Посмотрите какая разница в вычислениях, в первом случае их минимум, а во втором нужно потрудиться отдельно на листочке, да ещё и дробь которую получили сократить необходимо. Нахождение НОК упрощает работу значительно.

Ещё примеры:


*Во втором примере и так видно, что наименьшее число, которое делится на 40 и 60 равно 120.

ИТОГ! ОБЩИЙ АЛГОРИТМ ВЫЧИСЛЕНИЙ!

— приводим дроби к обыкновенным, если есть целая часть.

— приводим дроби к общему знаменателю (сначала смотрим делится ли один знаменатель на другой, если делится то умножаем числитель и знаменатель этой другой дроби; если не делится действуем посредством других указанных выше способов).

— получив дроби с равными знаменателями, выполняем действия (сложение, вычитание).

— если необходимо, то результат сокращаем.

— если необходимо, то выделяем целую часть.

2. Произведение дробей.

Правило простое. При умножении дробей умножаются их числители и знаменатели:

Примеры:

Задача. На базу привезли 13 тонн овощей. Картофель составляет ¾ от всех завезённых овощей. Сколько килограмм картофеля завезли на базу?

С произведением закончим.

*Ранее обещал вам привести формальное объяснение основного свойства дроби через произведение, пожалуйста:

3. Деление дробей.

Деление дробей сводится к их умножению. Здесь важно запомнить, что дробь являющаяся делителем (та, на которую делят) переворачивается и действие меняется на умножение:

Данное действие может быть записано в виде так называемой четырёхэтажной дроби, ведь само деление «:» тоже можно записать как дробь:

Примеры:

На этом всё! Успеха вам!

С уважением, Александр Крутицких.

Действия с дробями.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

Итак, что из себя представляют дроби, виды дробей, преобразования — мы вспомнили. Займёмся главным вопросом.

Что можно делать с дробями? Да всё то, что и с обычными числами. Складывать, вычитать, умножать, делить.

Все эти действия с десятичными дробями ничем не отличаются от действий с целыми числами. Собственно, этим они и хороши, десятичные. Единственно, запятую правильно поставить надо.

Смешанные числа , как я уже говорил, малопригодны для большинства действий. Их всё равно надо переводить в обыкновенные дроби.

А вот действия с обыкновенными дробями похитрее будут. И гораздо важнее! Напомню: все действия с дробными выражениями с буковками, синусами, неизвестными и прочая и прочая ничем не отличаются от действий с обыкновенными дробями ! Действия с обыкновенными дробями — это основа для всей алгебры. Именно по этой причине мы очень подробно разберём здесь всю эту арифметику.

Сложение и вычитание дробей.

Сложить (отнять) дроби с одинаковыми знаменателями каждый сможет (очень надеюсь!). Ну уж совсем забывчивым напомню: при сложении (вычитании) знаменатель не меняется. Числители складываются (вычитаются) и дают числитель результата. Типа:

Короче, в общем виде:

А если знаменатели разные? Тогда, используя основное свойство дроби (вот оно и опять пригодилось!), делаем знаменатели одинаковыми! Например:

Здесь нам из дроби 2/5 пришлось сделать дробь 4/10. Исключительно с целью сделать знаменатели одинаковыми. Замечу, на всякий случай, что 2/5 и 4/10 это одна и та же дробь ! Только 2/5 нам неудобно, а 4/10 очень даже ничего.

Кстати, в этом суть решений любых заданий по математике. Когда мы из неудобного выражения делаем то же самое, но уже удобное для решения .

Ещё пример:

Ситуация аналогичная. Здесь мы из 16 делаем 48. Простым умножением на 3. Это всё понятно. Но вот нам попалось что-нибудь типа:

Как быть?! Из семёрки девятку трудно сделать! Но мы умные, мы правила знаем! Преобразуем каждую дробь так, чтобы знаменатели стали одинаковыми. Это называется «приведём к общему знаменателю»:

Во как! Откуда же я узнал про 63? Очень просто! 63 это число, которое нацело делится на 7 и 9 одновременно. Такое число всегда можно получить перемножением знаменателей. Если мы какое-то число умножили на 7, к примеру, то результат уж точно на 7 делиться будет!

Если надо сложить (вычесть) несколько дробей, нет нужды делать это попарно, по шагам. Просто надо найти знаменатель, общий для всех дробей, и привести каждую дробь к этому самому знаменателю. Например:

И какой же общий знаменатель будет? Можно, конечно, перемножить 2, 4, 8, и 16. Получим 1024. Кошмар. Проще прикинуть, что число 16 отлично делится и на 2, и на 4, и на 8. Следовательно, из этих чисел легко получить 16. Это число и будет общим знаменателем. 1/2 превратим в 8/16, 3/4 в 12/16, ну и так далее.

Кстати, если за общий знаменатель взять 1024, тоже всё получится, в конце всё посокращается. Только до этого конца не все доберутся, из-за вычислений…

Дорешайте уж пример самостоятельно. Не логарифм какой… Должно получиться 29/16.

Итак, со сложением (вычитанием) дробей ясно, надеюсь? Конечно, проще работать в сокращённом варианте, с дополнительными множителями. Но это удовольствие доступно тем, кто честно трудился в младших классах… И ничего не забыл.

А сейчас мы поделаем те же самые действия, но не с дробями, а с дробными выражениями . Здесь обнаружатся новые грабли, да…

Итак, нам надо сложить два дробных выражения:

Надо сделать знаменатели одинаковыми. Причём только с помощью умножения ! Уж так основное свойство дроби велит. Поэтому я не могу в первой дроби в знаменателе к иксу прибавить единицу. (а вот бы хорошо было!). А вот если перемножить знаменатели, глядишь, всё и срастётся! Так и записываем, черту дроби, сверху пустое место оставим, потом допишем, а снизу пишем произведение знаменателей, чтобы не забыть:

И, конечно, ничего в правой части не перемножаем, скобки не открываем! А теперь, глядя на общий знаменатель правой части, соображаем: чтобы в первой дроби получился знаменатель х(х+1), надо числитель и знаменатель этой дроби умножить на (х+1). А во второй дроби — на х. Получится вот что:

Обратите внимание! Здесь появились скобки! Это и есть те грабли, на которые многие наступают. Не скобки, конечно, а их отсутствие. Скобки появляются потому, что мы умножаем весь числитель и весь знаменатель! А не их отдельные кусочки…

В числителе правой части записываем сумму числителей, всё как в числовых дробях, затем раскрываем скобки в числителе правой части, т.е. перемножаем всё и приводим подобные. Раскрывать скобки в знаменателях, перемножать что-то не нужно! Вообще, в знаменателях (любых) всегда приятнее произведение! Получим:

Вот и получили ответ. Процесс кажется долгим и трудным, но это от практики зависит. Порешаете примеры, привыкните, всё станет просто. Те, кто освоил дроби в положенное время, все эти операции одной левой делают, на автомате!

И ещё одно замечание. Многие лихо расправляются с дробями, но зависают на примерах с целыми числами. Типа: 2 + 1/2 + 3/4= ? Куда пристегнуть двойку? Никуда не надо пристёгивать, надо из двойки дробь сделать. Это не просто, а очень просто! 2=2/1. Вот так. Любое целое число можно записать в виде дроби. В числителе — само число, в знаменателе — единица. 7 это 7/1, 3 это 3/1 и так далее. С буквами — то же самое. (а+в) = (а+в)/1, х=х/1 и т.д. А дальше работаем с этим дробями по всем правилам.

Ну, по сложению — вычитанию дробей знания освежили. Преобразования дробей из одного вида в другой — повторили. Можно и провериться. Порешаем немного?)

Вычислить:

Ответы (в беспорядке):

71/20; 3/5; 17/12; -5/4; 11/6

Умножение/деление дробей — в следующем уроке. Там же и задания на все действия с дробями.

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

C 11 все действия с дробями. Сложные выражения с дробями. Порядок действий. Порядок выполнения действий с дробями

Калькулятор дробей предназначен для быстрого расчета операций с дробями, поможет легко дроби сложить, умножить, поделить или вычесть.

Современные школьники начинают изучение дробей уже в 5 классе, с каждым годом упражнения с ними усложняются. Математические термины и величины, которые мы узнаем в школе, редко могут пригодиться нам во взрослой жизни. Однако дроби, в отличие от логарифмов и степеней, встречаются в повседневности достаточно часто (измерение расстояния, взвешивание товара и т.д.). Наш калькулятор предназначен для быстрого проведения операций с дробями.

Для начала определим, что такое дроби и какие они бывают. Дробями называют отношение одного числа к другому, это число, состоящее из целого количества долей единицы.

Разновидности дробей:

  • Обыкновенные
  • Десятичные
  • Смешанные

Пример обыкновенных дробей:

Верхнее значение является числителем, нижнее знаменателем. Черточка показывает нам, что верхнее число делится на нижнее. Вместо подобного формата написания, когда черточка находится горизонтально, можно писать по-другому. Можно ставить наклонную линию, например:

1/2, 3/7, 19/5, 32/8, 10/100, 4/1

Десятичные дроби являются самой популярной разновидностью дробей. Они состоят из целой части и дробной, отделенные запятой.

Пример десятичных дробей:

0,2, или 6,71 или 0,125

Состоят из целого числа и дробной части. Чтобы узнать значение этой дроби, нужно сложить целое число и дробь.

Пример смешанных дробей:

Калькулятор дробей на нашем сайте способен быстро в онлайн-режиме выполнить любые математические операции с дробями:

  • Сложение
  • Вычитание
  • Умножение
  • Деление

Для осуществления расчета нужно ввести цифры в поля и выбрать действие. У дробей нужно заполнить числитель и знаменатель, целое число может не писаться (если дробь обыкновенная). Не забудьте нажать на кнопку «равно».

Удобно, что калькулятор сразу предоставляет процесс решения примера с дробями, а не только готовый ответ. Именно благодаря развернутому решению вы можете использовать данный материал при решении школьных задач и для лучшего освоения пройденного материала.

Вам нужно осуществить расчет примера:

После введения показателей в поля формы получаем:


Чтобы сделать самостоятельный расчет, введите данные в форму.

Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия — в том же порядке, как и для обычных чисел. А именно:

  1. Сначала выполняется возведение в степень — избавьтесь от всех выражений, содержащих показатели;
  2. Затем — деление и умножение;
  3. Последним шагом выполняется сложение и вычитание.

Разумеется, если в выражении присутствуют скобки, порядок действий изменяется — все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем — деление. Заметим, что 14 = 7 · 2 . Тогда:

Наконец, считаем третий пример. Здесь есть скобки и степень — их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно — знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

Многоэтажные дроби

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

Задача. Переведите многоэтажные дроби в обычные:

В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

В последнем примере перед окончательным умножением дроби были сокращены.

Специфика работы с многоэтажными дробями

В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

  1. В числителе стоит отдельное число 7, а в знаменателе — дробь 12/5;
  2. В числителе стоит дробь 7/12, а в знаменателе — отдельное число 5.

Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно — в несколько раз.

Если следовать этому правилу, то приведенные выше дроби надо записать так:

Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок — пара примеров, где действительно возникают многоэтажные дроби:

Задача. Найдите значения выражений:

Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем — частное.

Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

Данная статья рассматривает действия над дробями. Будут сформированы и обоснованы правила сложения, вычитания, умножения, деления или возведения в степень дробей вида A B , где A и B могут быть числами, числовыми выражениями или выражениями с переменными. В заключении будут рассмотрены примеры решения с подробным описанием.

Yandex.RTB R-A-339285-1

Правила выполнения действий с числовыми дробями общего вида

Числовые дроби общего вида имеют числитель и знаменатель, в которых имеются натуральные числа или числовые выражения. Если рассмотреть такие дроби, как 3 5 , 2 , 8 4 , 1 + 2 · 3 4 · (5 — 2) , 3 4 + 7 8 2 , 3 — 0 , 8 , 1 2 · 2 , π 1 — 2 3 + π , 2 0 , 5 ln 3 , то видно, что числитель и знаменатель может иметь не только числа, но и выражения различного плана.

Определение 1

Существуют правила, по которым идет выполнение действий с обыкновенными дробями. Оно подходит и для дробей общего вида:

  • При вычитании дробей с одинаковыми знаменателями складываются только числители, а знаменатель остается прежним, а именно: a d ± c d = a ± c d , значения a , c и d ≠ 0 являются некоторыми числами или числовыми выражениями.
  • При сложении или вычитании дроби при разных знаменателях, необходимо произвести приведение к общему, после чего произвести сложение или вычитание полученных дробей с одинаковыми показателями. Буквенно это выглядит таком образом a b ± c d = a · p ± c · r s , где значения a , b ≠ 0 , c , d ≠ 0 , p ≠ 0 , r ≠ 0 , s ≠ 0 являются действительными числами, а b · p = d · r = s . Когда p = d и r = b , тогда a b ± c d = a · d ± c · d b · d .
  • При умножении дробей выполняется действие с числителями, после чего со знаменателями, тогда получим a b · c d = a · c b · d , где a , b ≠ 0 , c , d ≠ 0 выступают в роли действительных чисел.
  • При делении дроби на дробь первую умножаем на вторую обратную, то есть производим замену местами числителя и знаменателя: a b: c d = a b · d c .

Обоснование правил

Определение 2

Существуют следующие математические моменты, на которые следует опираться при вычислении:

  • дробная черта означает знак деления;
  • деление на число рассматривается как умножение на его обратное значение;
  • применение свойства действий с действительными числами;
  • применение основного свойства дроби и числовых неравенств.

С их помощью можно производить преобразования вида:

a d ± c d = a · d — 1 ± c · d — 1 = a ± c · d — 1 = a ± c d ; a b ± c d = a · p b · p ± c · r d · r = a · p s ± c · e s = a · p ± c · r s ; a b · c d = a · d b · d · b · c b · d = a · d · a · d — 1 · b · c · b · d — 1 = = a · d · b · c · b · d — 1 · b · d — 1 = a · d · b · c b · d · b · d — 1 = = (a · c) · (b · d) — 1 = a · c b · d

Примеры

В предыдущем пункте было сказано про действия с дробями. Именно после этого дробь нуждается в упрощении. Подробно эта тема была рассмотрена в пункте о преобразовании дробей.

Для начала рассмотрим пример сложения и вычитания дробей с одинаковым знаменателем.

Пример 1

Даны дроби 8 2 , 7 и 1 2 , 7 , то по правилу необходимо числитель сложить, а знаменатель переписать.

Решение

Тогда получаем дробь вида 8 + 1 2 , 7 . После выполнения сложения получаем дробь вида 8 + 1 2 , 7 = 9 2 , 7 = 90 27 = 3 1 3 . Значит, 8 2 , 7 + 1 2 , 7 = 8 + 1 2 , 7 = 9 2 , 7 = 90 27 = 3 1 3 .

Ответ: 8 2 , 7 + 1 2 , 7 = 3 1 3

Имеется другой способ решения. Для начала производится переход к виду обыкновенной дроби, после чего выполняем упрощение. Это выглядит таким образом:

8 2 , 7 + 1 2 , 7 = 80 27 + 10 27 = 90 27 = 3 1 3

Пример 2

Произведем вычитание из 1 — 2 3 · log 2 3 · log 2 5 + 1 дроби вида 2 3 3 · log 2 3 · log 2 5 + 1 .

Так как даны равные знаменатели, значит, что мы выполняем вычисление дроби при одинаковом знаменателе. Получим, что

1 — 2 3 · log 2 3 · log 2 5 + 1 — 2 3 3 · log 2 3 · log 2 5 + 1 = 1 — 2 — 2 3 3 · log 2 3 · log 2 5 + 1

Имеются примеры вычисления дробей с разными знаменателями. Важный пункт – это приведение к общему знаменателю. Без этого мы не сможем выполнять дальнейшие действия с дробями.

Процесс отдаленно напоминает приведение к общему знаменателю. То есть производится поиск наименьшего общего делителя в знаменателе, после чего добавляются недостающие множители к дробям.

Если складываемые дроби не имеют общих множителей, тогда им может стать их произведение.

Пример 3

Рассмотрим на примере сложения дробей 2 3 5 + 1 и 1 2 .

Решение

В данном случае общим знаменателем выступает произведение знаменателей. Тогда получаем, что 2 · 3 5 + 1 . Тогда при выставлении дополнительных множителей имеем, что к первой дроби он равен 2 , а ко второй 3 5 + 1 . После перемножения дроби приводятся к виду 4 2 · 3 5 + 1 . Общее приведение 1 2 будет иметь вид 3 5 + 1 2 · 3 5 + 1 . Полученные дробные выражения складываем и получаем, что

2 3 5 + 1 + 1 2 = 2 · 2 2 · 3 5 + 1 + 1 · 3 5 + 1 2 · 3 5 + 1 = = 4 2 · 3 5 + 1 + 3 5 + 1 2 · 3 5 + 1 = 4 + 3 5 + 1 2 · 3 5 + 1 = 5 + 3 5 2 · 3 5 + 1

Ответ: 2 3 5 + 1 + 1 2 = 5 + 3 5 2 · 3 5 + 1

Когда имеем дело с дробями общего вида, тогда о наименьшем общем знаменателе обычно дело не идет. В качестве знаменателя нерентабельно принимать произведение числителей. Для начала необходимо проверить, имеется ли число, которое меньше по значению, чем их произведение.

Пример 4

Рассмотрим на примере 1 6 · 2 1 5 и 1 4 · 2 3 5 , когда их произведение будет равно 6 · 2 1 5 · 4 · 2 3 5 = 24 · 2 4 5 . Тогда в качестве общего знаменателя берем 12 · 2 3 5 .

Рассмотрим примеры умножений дробей общего вида.

Пример 5

Для этого необходимо произвести умножение 2 + 1 6 и 2 · 5 3 · 2 + 1 .

Решение

Следую правилу, необходимо переписать и в виде знаменателя написать произведение числителей. Получаем, что 2 + 1 6 · 2 · 5 3 · 2 + 1 2 + 1 · 2 · 5 6 · 3 · 2 + 1 . Когда дробь будет умножена, можно производить сокращения для ее упрощения. Тогда 5 · 3 3 2 + 1: 10 9 3 = 5 · 3 3 2 + 1 · 9 3 10 .

Используя правило перехода от деления к умножению на обратную дробь, получим дробь, обратную данной. Для этого числитель и знаменатель меняются местами. Рассмотрим на примере:

5 · 3 3 2 + 1: 10 9 3 = 5 · 3 3 2 + 1 · 9 3 10

После чего должны выполнить умножение и упростить полученную дробь. Если необходимо, то избавиться от иррациональности в знаменателе. Получаем, что

5 · 3 3 2 + 1: 10 9 3 = 5 · 3 3 · 9 3 10 · 2 + 1 = 5 · 2 10 · 2 + 1 = 3 2 · 2 + 1 = = 3 · 2 — 1 2 · 2 + 1 · 2 — 1 = 3 · 2 — 1 2 · 2 2 — 1 2 = 3 · 2 — 1 2

Ответ: 5 · 3 3 2 + 1: 10 9 3 = 3 · 2 — 1 2

Данный пункт применим, когда число или числовое выражение может быть представлено в виде дроби, имеющую знаменатель, равный 1 , тогда и действие с такой дробью рассматривается отдельным пунктом. Например, выражение 1 6 · 7 4 — 1 · 3 видно, что корень из 3 может быть заменен другим 3 1 выражением. Тогда эта запись будет выглядеть как умножение двух дробей вида 1 6 · 7 4 — 1 · 3 = 1 6 · 7 4 — 1 · 3 1 .

Выполнение действие с дробями, содержащими переменные

Правила, рассмотренные в первой статье, применимы для действий с дробями, содержащими переменные. Рассмотрим правило вычитания, когда знаменатели одинаковые.

Необходимо доказать, что A , C и D (D не равное нулю) могут быть любыми выражениями, причем равенство A D ± C D = A ± C D равноценно с его областью допустимых значений.

Необходимо взять набор переменных ОДЗ. Тогда А, С, D должны принимать соответственные значения a 0 , c 0 и d 0 . Подстановка вида A D ± C D приводит разность вида a 0 d 0 ± c 0 d 0 , где по правилу сложения получаем формулу вида a 0 ± c 0 d 0 . Если подставить выражение A ± C D , тогда получаем ту же дробь вида a 0 ± c 0 d 0 . Отсюда делаем вывод, что выбранное значение, удовлетворяющее ОДЗ, A ± C D и A D ± C D считаются равными.

При любом значении переменных данные выражения будут равны, то есть их называют тождественно равными. Значит это выражение считается доказываемым равенством вида A D ± C D = A ± C D .

Примеры сложения и вычитания дробей с переменными

Когда имеются одинаковые знаменатели, необходимо только складывать или вычитать числители. Такая дробь может быть упрощена. Иногда приходится работать с дробями, которые являются тождественно равными, но при первом взгляде это незаметно, так как необходимо выполнять некоторые преобразования. Например, x 2 3 · x 1 3 + 1 и x 1 3 + 1 2 или 1 2 · sin 2 α и sin a · cos a . Чаще всего требуется упрощение исходного выражения для того, чтобы увидеть одинаковые знаменатели.

Пример 6

Вычислить: 1) x 2 + 1 x + x — 2 — 5 — x x + x — 2 , 2) l g 2 x + 4 x · (l g x + 2) + 4 · l g x x · (l g x + 2) , x — 1 x — 1 + x x + 1 .

Решение

  1. Чтобы произвести вычисление, необходимо вычесть дроби, которым имеют одинаковые знаменатели. Тогда получаем, что x 2 + 1 x + x — 2 — 5 — x x + x — 2 = x 2 + 1 — 5 — x x + x — 2 . После чего можно выполнять раскрытие скобок с приведением подобных слагаемых. Получаем, что x 2 + 1 — 5 — x x + x — 2 = x 2 + 1 — 5 + x x + x — 2 = x 2 + x — 4 x + x — 2
  2. Так как знаменатели одинаковые, то остается только сложить числители, оставив знаменатель:​​​​​​ l g 2 x + 4 x · (l g x + 2) + 4 · l g x x · (l g x + 2) = l g 2 x + 4 + 4 x · (l g x + 2)
    Сложение было выполнено. Видно, что можно произвести сокращение дроби. Ее числитель может быть свернут по формуле квадрата суммы, тогда получим (l g x + 2) 2 из формул сокращенного умножения. Тогда получаем, что
    l g 2 x + 4 + 2 · l g x x · (l g x + 2) = (l g x + 2) 2 x · (l g x + 2) = l g x + 2 x
  3. Заданные дроби вида x — 1 x — 1 + x x + 1 с разными знаменателями. После преобразования можно перейти к сложению.

Рассмотрим двоякий способ решения.

Первый способ заключается в том, что знаменатель первой дроби подвергается разложению на множители при помощи квадратов, причем с ее последующим сокращением. Получим дробь вида

x — 1 x — 1 = x — 1 (x — 1) · x + 1 = 1 x + 1

Значит, x — 1 x — 1 + x x + 1 = 1 x + 1 + x x + 1 = 1 + x x + 1 .

В таком случае необходимо избавляться от иррациональности в знаменателе.

1 + x x + 1 = 1 + x · x — 1 x + 1 · x — 1 = x — 1 + x · x — x x — 1

Второй способ заключается в умножении числителя и знаменателя второй дроби на выражение x — 1 . Таким образом, мы избавляемся от иррациональности и переходим к сложению дроби при наличии одинакового знаменателя. Тогда

x — 1 x — 1 + x x + 1 = x — 1 x — 1 + x · x — 1 x + 1 · x — 1 = = x — 1 x — 1 + x · x — x x — 1 = x — 1 + x · x — x x — 1

Ответ: 1) x 2 + 1 x + x — 2 — 5 — x x + x — 2 = x 2 + x — 4 x + x — 2 , 2) l g 2 x + 4 x · (l g x + 2) + 4 · l g x x · (l g x + 2) = l g x + 2 x , 3) x — 1 x — 1 + x x + 1 = x — 1 + x · x — x x — 1 .

В последнем примере получили, что приведение к общему знаменателю неизбежно. Для этого необходимо упрощать дроби. Для сложения или вычитая всегда необходимо искать общий знаменатель, который выглядит как произведение знаменателей с добавлением дополниетльных множителей к числителям.

Пример 7

Вычислить значения дробей: 1) x 3 + 1 x 7 + 2 · 2 , 2) x + 1 x · ln 2 (x + 1) · (2 x — 4) — sin x x 5 · ln (x + 1) · (2 x — 4) , 3) 1 cos 2 x — x + 1 cos 2 x + 2 · cos x · x + x

Решение

  1. Никаких сложных вычислений знаменатель не требует, поэтому нужно выбрать их произведение вида 3 · x 7 + 2 · 2 , тогда к первой дроби x 7 + 2 · 2 выбирают как дополнительный множитель, а 3 ко второй. При перемножении получаем дробь вида x 3 + 1 x 7 + 2 · 2 = x · x 7 + 2 · 2 3 · x 7 + 2 · 2 + 3 · 1 3 · x 7 + 2 · 2 = = x · x 7 + 2 · 2 + 3 3 · x 7 + 2 · 2 = x · x 7 + 2 · 2 · x + 3 3 · x 7 + 2 · 2
  2. Видно, что знаменатели представлены в виде произведения, что означает ненужность дополнительных преобразований. Общим знаменателем будет считаться произведение вида x 5 · ln 2 x + 1 · 2 x — 4 . Отсюда x 4 является дополнительным множителем к первой дроби, а ln (x + 1) ко второй. После чего производим вычитание и получаем, что:
    x + 1 x · ln 2 (x + 1) · 2 x — 4 — sin x x 5 · ln (x + 1) · 2 x — 4 = = x + 1 · x 4 x 5 · ln 2 (x + 1) · 2 x — 4 — sin x · ln x + 1 x 5 · ln 2 (x + 1) · (2 x — 4) = = x + 1 · x 4 — sin x · ln (x + 1) x 5 · ln 2 (x + 1) · (2 x — 4) = x · x 4 + x 4 — sin x · ln (x + 1) x 5 · ln 2 (x + 1) · (2 x — 4)
  3. Данный пример имеет смысл при работе со знаменателями дробями. Необходимо применить формулы разности квадратов и квадрат суммы, так как именно они дадут возможность перейти к выражению вида 1 cos x — x · cos x + x + 1 (cos x + x) 2 . Видно, что дроби приводятся к общему знаменателю. Получаем, что cos x — x · cos x + x 2 .

После чего получаем, что

1 cos 2 x — x + 1 cos 2 x + 2 · cos x · x + x = = 1 cos x — x · cos x + x + 1 cos x + x 2 = = cos x + x cos x — x · cos x + x 2 + cos x — x cos x — x · cos x + x 2 = = cos x + x + cos x — x cos x — x · cos x + x 2 = 2 · cos x cos x — x · cos x + x 2

Ответ:

1) x 3 + 1 x 7 + 2 · 2 = x · x 7 + 2 · 2 · x + 3 3 · x 7 + 2 · 2 , 2) x + 1 x · ln 2 (x + 1) · 2 x — 4 — sin x x 5 · ln (x + 1) · 2 x — 4 = = x · x 4 + x 4 — sin x · ln (x + 1) x 5 · ln 2 (x + 1) · (2 x — 4) , 3) 1 cos 2 x — x + 1 cos 2 x + 2 · cos x · x + x = 2 · cos x cos x — x · cos x + x 2 .

Примеры умножения дробей с переменными

При умножении дробей числитель умножается на числитель, а знаменатель на знаменатель. Тогда можно применять свойство сокращения.

Пример 8

Произвести умножение дробей x + 2 · x x 2 · ln x 2 · ln x + 1 и 3 · x 2 1 3 · x + 1 — 2 sin 2 · x — x .

Решение

Необходимо выполнить умножение. Получаем, что

x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 — 2 sin (2 · x — x) = = x — 2 · x · 3 · x 2 1 3 · x + 1 — 2 x 2 · ln x 2 · ln x + 1 · sin (2 · x — x)

Число 3 переносится на первое место для удобства подсчетов, причем можно произвести сокращение дроби на x 2 , тогда получим выражение вида

3 · x — 2 · x · x 1 3 · x + 1 — 2 ln x 2 · ln x + 1 · sin (2 · x — x)

Ответ: x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 — 2 sin (2 · x — x) = 3 · x — 2 · x · x 1 3 · x + 1 — 2 ln x 2 · ln x + 1 · sin (2 · x — x) .

Деление

Деление у дробей аналогично умножению, так как первую дробь умножают на вторую обратную. Если взять к примеру дробь x + 2 · x x 2 · ln x 2 · ln x + 1 и разделить на 3 · x 2 1 3 · x + 1 — 2 sin 2 · x — x , тогда это можно записать таким образом, как

x + 2 · x x 2 · ln x 2 · ln x + 1: 3 · x 2 1 3 · x + 1 — 2 sin (2 · x — x) , после чего заменить произведением вида x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 — 2 sin (2 · x — x)

Возведение в степень

Перейдем к рассмотрению действия с дробями общего вида с возведением в степень. Если имеется степень с натуральным показателем, тогда действие рассматривают как умножение одинаковых дробей. Но рекомендовано использовать общий подход, базирующийся на свойствах степеней. Любые выражения А и С, где С тождественно не равняется нулю, а любое действительное r на ОДЗ для выражения вида A C r справедливо равенство A C r = A r C r . Результат – дробь, возведенная в степень. Для примера рассмотрим:

x 0 , 7 — π · ln 3 x — 2 — 5 x + 1 2 , 5 = = x 0 , 7 — π · ln 3 x — 2 — 5 2 , 5 x + 1 2 , 5

Порядок выполнения действий с дробями

Действия над дробями выполняются по определенным правилам. На практике замечаем, что выражение может содержать несколько дробей или дробных выражений. Тогда необходимо все действия выполнять в строгом порядке: возводить в степень, умножать, делить, после чего складывать и вычитать. При наличии скобок первое действие выполняется именно в них.

Пример 9

Вычислить 1 — x cos x — 1 c o s x · 1 + 1 x .

Решение

Так как имеем одинаковый знаменатель, то 1 — x cos x и 1 c o s x , но производить вычитания по правилу нельзя, сначала выполняются действия в скобках, после чего умножение, а потом сложение. Тогда при вычислении получаем, что

1 + 1 x = 1 1 + 1 x = x x + 1 x = x + 1 x

При подстановке выражения в исходное получаем, что 1 — x cos x — 1 cos x · x + 1 x . При умножении дробей имеем: 1 cos x · x + 1 x = x + 1 cos x · x . Произведя все подстановки, получим 1 — x cos x — x + 1 cos x · x . Теперь необходимо работать с дробями, которые имеют разные знаменатели. Получим:

x · 1 — x cos x · x — x + 1 cos x · x = x · 1 — x — 1 + x cos x · x = = x — x — x — 1 cos x · x = — x + 1 cos x · x

Ответ: 1 — x cos x — 1 c o s x · 1 + 1 x = — x + 1 cos x · x .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Содержание урока

Сложение дробей с одинаковыми знаменателями

Сложение дробей бывает двух видов:

  1. Сложение дробей с одинаковыми знаменателями
  2. Сложение дробей с разными знаменателями

Сначала изучим сложение дробей с одинаковыми знаменателями. Тут всё просто. Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменения. Например, сложим дроби и . Складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если к пиццы прибавить пиццы, то получится пиццы:

Пример 2. Сложить дроби и .

В ответе получилась неправильная дробь . Если наступает конец задачи, то от неправильных дробей принято избавляться. Чтобы избавится от неправильной дроби, нужно выделить в ней целую часть. В нашем случае целая часть выделяется легко — два разделить на два равно единице:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на две части. Если к пиццы прибавить еще пиццы, то получится одна целая пицца:

Пример 3 . Сложить дроби и .

Опять же складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если к пиццы прибавить ещё пиццы, то получится пиццы:

Пример 4. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Числители необходимо сложить, а знаменатель оставить без изменения:

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы и ещё прибавить пиццы, то получится 1 целая и ещё пиццы.

Как видите в сложении дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы сложить дроби с одинаковыми знаменателя, нужно сложить их числители, а знаменатель оставить без изменения;

Сложение дробей с разными знаменателями

Теперь научимся складывать дроби с разными знаменателями. Когда складывают дроби, знаменатели этих дробей должны быть одинаковыми. Но одинаковыми они бывают не всегда.

Например, дроби и сложить можно, поскольку у них одинаковые знаменатели.

А вот дроби и сразу сложить нельзя, поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Существует несколько способов приведения дробей к одинаковому знаменателю. Сегодня мы рассмотрим только один из них, поскольку остальные способы могут показаться сложными для начинающего.

Суть этого способа заключается в том, что сначала ищется (НОК) знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель. Аналогично поступают и со второй дробью — НОК делят на знаменатель второй дроби и получают второй дополнительный множитель.

Затем числители и знаменатели дробей умножаются на свои дополнительные множители. В результате этих действий, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем.

Пример 1 . Сложим дроби и

В первую очередь находим наименьшее общее кратное знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 2. Наименьшее общее кратное этих чисел равно 6

НОК (2 и 3) = 6

Теперь возвращаемся к дробям и . Сначала разделим НОК на знаменатель первой дроби и получим первый дополнительный множитель. НОК это число 6, а знаменатель первой дроби это число 3. Делим 6 на 3, получаем 2.

Полученное число 2 это первый дополнительный множитель. Записываем его к первой дроби. Для этого делаем небольшую косую линию над дробью и записываем над ней найденный дополнительный множитель:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби и получаем второй дополнительный множитель. НОК это число 6, а знаменатель второй дроби — число 2. Делим 6 на 2, получаем 3.

Полученное число 3 это второй дополнительный множитель. Записываем его ко второй дроби. Опять же делаем небольшую косую линию над второй дробью и записываем над ней найденный дополнительный множитель:

Теперь у нас всё готово для сложения. Осталось умножить числители и знаменатели дробей на свои дополнительные множители:

Посмотрите внимательно к чему мы пришли. Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Таким образом, пример завершается. К прибавить получается .

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы, то получится одна целая пицца и еще одна шестая пиццы:

Приведение дробей к одинаковому (общему) знаменателю также можно изобразить с помощью рисунка. Приведя дроби и к общему знаменателю, мы получили дроби и . Эти две дроби будут изображаться теми же кусками пицц. Различие будет лишь в том, что в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю).

Первый рисунок изображает дробь (четыре кусочка из шести), а второй рисунок изображает дробь (три кусочка из шести). Сложив эти кусочки мы получаем (семь кусочков из шести). Эта дробь неправильная, поэтому мы выделили в ней целую часть. В результате получили (одну целую пиццу и еще одну шестую пиццы).

Отметим, что мы с вами расписали данный пример слишком подробно. В учебных заведениях не принято писать так развёрнуто. Нужно уметь быстро находить НОК обоих знаменателей и дополнительные множители к ним, а также быстро умножать найденные дополнительные множители на свои числители и знаменатели. Находясь в школе, данный пример нам пришлось бы записать следующим образом:

Но есть и обратная сторона медали. Если на первых этапах изучения математики не делать подробных записей, то начинают появляться вопросы рода «а откуда вон та цифра?», «почему дроби вдруг превращаются совсем в другие дроби? «.

Чтобы легче было складывать дроби с разными знаменателями, можно воспользоваться следующей пошаговой инструкцией:

  1. Найти НОК знаменателей дробей;
  2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби;
  3. Умножить числители и знаменатели дробей на свои дополнительные множители;
  4. Сложить дроби, у которых одинаковые знаменатели;
  5. Если в ответе получилась неправильная дробь, то выделить её целую часть;

Пример 2. Найти значение выражения .

Воспользуемся инструкцией, которая приведена выше.

Шаг 1. Найти НОК знаменателей дробей

Находим НОК знаменателей обеих дробей. Знаменатели дробей это числа 2, 3 и 4

Шаг 2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби

Делим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби это число 2. Делим 12 на 2, получаем 6. Получили первый дополнительный множитель 6. Записываем его над первой дробью:

Теперь делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби это число 3. Делим 12 на 3, получаем 4. Получили второй дополнительный множитель 4. Записываем его над второй дробью:

Теперь делим НОК на знаменатель третьей дроби. НОК это число 12, а знаменатель третьей дроби это число 4. Делим 12 на 4, получаем 3. Получили третий дополнительный множитель 3. Записываем его над третьей дробью:

Шаг 3. Умножить числители и знаменатели дробей на свои дополнительные множители

Умножаем числители и знаменатели на свои дополнительные множители:

Шаг 4. Сложить дроби у которых одинаковые знаменатели

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби, у которых одинаковые (общие) знаменатели. Осталось сложить эти дроби. Складываем:

Сложение не поместилось на одной строке, поэтому мы перенесли оставшееся выражение на следующую строку. Это допускается в математике. Когда выражение не помещается на одну строку, его переносят на следующую строку, при этом надо обязательно поставить знак равенства (=) на конце первой строки и в начале новой строки. Знак равенства на второй строке говорит о том, что это продолжение выражения, которое было на первой строке.

Шаг 5. Если в ответе получилась неправильная дробь, то выделить в ней целую часть

У нас в ответе получилась неправильная дробь. Мы должны выделить у неё целую часть. Выделяем:

Получили ответ

Вычитание дробей с одинаковыми знаменателями

Вычитание дробей бывает двух видов:

  1. Вычитание дробей с одинаковыми знаменателями
  2. Вычитание дробей с разными знаменателями

Сначала изучим вычитание дробей с одинаковыми знаменателями. Тут всё просто. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить прежним.

Например, найдём значение выражения . Чтобы решить этот пример, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения. Так и сделаем:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 2. Найти значение выражения .

Опять же из числителя первой дроби вычитаем числитель второй дроби, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 3. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Из числителя первой дроби нужно вычесть числители остальных дробей:

Как видите в вычитании дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения;
  2. Если в ответе получилась неправильная дробь, то нужно выделить в ней целую часть.

Вычитание дробей с разными знаменателями

Например, от дроби можно вычесть дробь , поскольку у этих дробей одинаковые знаменатели. А вот от дроби нельзя вычесть дробь , поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Общий знаменатель находят по тому же принципу, которым мы пользовались при сложении дробей с разными знаменателями. В первую очередь находят НОК знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель, который записывается над первой дробью. Аналогично НОК делят на знаменатель второй дроби и получают второй дополнительный множитель, который записывается над второй дробью.

Затем дроби умножаются на свои дополнительные множители. В результате этих операций, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем.

Пример 1. Найти значение выражения:

У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

Сначала находим НОК знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 4. Наименьшее общее кратное этих чисел равно 12

НОК (3 и 4) = 12

Теперь возвращаемся к дробям и

Найдём дополнительный множитель для первой дроби. Для этого разделим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби — число 3. Делим 12 на 3, получаем 4. Записываем четвёрку над первой дробью:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби — число 4. Делим 12 на 4, получаем 3. Записываем тройку над второй дробью:

Теперь у нас всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Получили ответ

Попробуем изобразить наше решение с помощью рисунка. Если от пиццы отрезать пиццы, то получится пиццы

Это подробная версия решения. Находясь в школе, нам пришлось бы решить этот пример покороче. Выглядело бы такое решение следующим образом:

Приведение дробей и к общему знаменателю также может быть изображено с помощью рисунка. Приведя эти дроби к общему знаменателю, мы получили дроби и . Эти дроби будут изображаться теми же кусочками пицц, но в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю):

Первый рисунок изображает дробь (восемь кусочков из двенадцати), а второй рисунок — дробь (три кусочка из двенадцати). Отрезав от восьми кусочков три кусочка мы получаем пять кусочков из двенадцати. Дробь и описывает эти пять кусочков.

Пример 2. Найти значение выражения

У этих дробей разные знаменатели, поэтому сначала нужно привести их к одинаковому (общему) знаменателю.

Найдём НОК знаменателей этих дробей.

Знаменатели дробей это числа 10, 3 и 5. Наименьшее общее кратное этих чисел равно 30

НОК (10, 3, 5) = 30

Теперь находим дополнительные множители для каждой дроби. Для этого разделим НОК на знаменатель каждой дроби.

Найдём дополнительный множитель для первой дроби. НОК это число 30, а знаменатель первой дроби — число 10. Делим 30 на 10, получаем первый дополнительный множитель 3. Записываем его над первой дробью:

Теперь находим дополнительный множитель для второй дроби. Разделим НОК на знаменатель второй дроби. НОК это число 30, а знаменатель второй дроби — число 3. Делим 30 на 3, получаем второй дополнительный множитель 10. Записываем его над второй дробью:

Теперь находим дополнительный множитель для третьей дроби. Разделим НОК на знаменатель третьей дроби. НОК это число 30, а знаменатель третьей дроби — число 5. Делим 30 на 5, получаем третий дополнительный множитель 6. Записываем его над третьей дробью:

Теперь всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые (общие) знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример.

Продолжение примера не поместится на одной строке, поэтому переносим продолжение на следующую строку. Не забываем про знак равенства (=) на новой строке:

В ответе получилась правильная дробь, и вроде бы нас всё устраивает, но она слишком громоздка и некрасива. Надо бы сделать её проще. А что можно сделать? Можно сократить эту дробь.

Чтобы сократить дробь , нужно разделить её числитель и знаменатель на (НОД) чисел 20 и 30.

Итак, находим НОД чисел 20 и 30:

Теперь возвращаемся к нашему примеру и делим числитель и знаменатель дроби на найденный НОД, то есть на 10

Получили ответ

Умножение дроби на число

Чтобы умножить дробь на число, нужно числитель данной дроби умножить на это число, а знаменатель оставить без изменений.

Пример 1 . Умножить дробь на число 1 .

Умножим числитель дроби на число 1

Запись можно понимать, как взять половину 1 раз. К примеру, если пиццы взять 1 раз, то получится пиццы

Из законов умножения мы знаем, что если множимое и множитель поменять местами, то произведение не изменится. Если выражение , записать как , то произведение по прежнему будет равно . Опять же срабатывает правило перемножения целого числа и дроби:

Эту запись можно понимать, как взятие половины от единицы. К примеру, если имеется 1 целая пицца и мы возьмем от неё половину, то у нас окажется пиццы:

Пример 2 . Найти значение выражения

Умножим числитель дроби на 4

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Выражение можно понимать, как взятие двух четвертей 4 раза. К примеру, если пиццы взять 4 раза, то получится две целые пиццы

А если поменять множимое и множитель местами, то получим выражение . Оно тоже будет равно 2. Это выражение можно понимать, как взятие двух пицц от четырех целых пицц:

Число, которое умножается на дробь, и знаменатель дроби разрешается , если они имеют общий делитель, бóльший единицы.

Например, выражение можно вычислить двумя способами.

Первый способ . Умножить число 4 на числитель дроби, а знаменатель дроби оставить без изменений:

Второй способ . Умножаемую четвёрку и четвёрку, находящуюся в знаменателе дроби , можно сократить. Сократить эти четвёрки можно на 4 , поскольку наибольший общий делитель для двух четвёрок есть сама четвёрка:

Получился тот же результат 3. После сокращения четвёрок, на их месте образуются новые числа: две единицы. Но перемножение единицы с тройкой, и далее деление на единицу ничего не меняет. Поэтому решение можно записать покороче:

Сокращение может быть выполнено даже тогда, когда мы решили воспользоваться первым способом, но на этапе перемножения числа 4 и числителя 3 решили воспользоваться сокращением:

А вот к примеру выражение можно вычислить только первым способом — умножить 7 на знаменатель дроби , а знаменатель оставить без изменений:

Связано это с тем, что число 7 и знаменатель дроби не имеют общего делителя, бóльшего единицы, и соответственно не сокращаются.

Некоторые ученики по ошибке сокращают умножаемое число и числитель дроби. Делать этого нельзя. Например, следующая запись не является правильной:

Сокращение дроби подразумевает, что и числитель и знаменатель будет разделён на одно и тоже число. В ситуации с выражением деление выполнено только в числителе, поскольку записать это всё равно, что записать . Видим, что деление выполнено только в числителе, а в знаменателе никакого деления не происходит.

Умножение дробей

Чтобы перемножить дроби, нужно перемножить их числители и знаменатели. Если в ответе получится неправильная дробь, нужно выделить в ней целую часть.

Пример 1. Найти значение выражения .

Получили ответ . Желательно сократить данную дробь. Дробь можно сократить на 2. Тогда окончательное решение примет следующий вид:

Выражение можно понимать, как взятие пиццы от половины пиццы. Допустим, у нас есть половина пиццы:

Как взять от этой половины две третьих? Сначала нужно поделить эту половину на три равные части:

И взять от этих трех кусочков два:

У нас получится пиццы. Вспомните, как выглядит пицца, разделенная на три части:

Один кусок от этой пиццы и взятые нами два кусочка будут иметь одинаковые размеры:

Другими словами, речь идет об одном и том же размере пиццы. Поэтому значение выражения равно

Пример 2 . Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Пример 3. Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась правильная дробь, но будет хорошо, если её сократить. Чтобы сократить эту дробь, нужно числитель и знаменатель данной дроби разделить на наибольший общий делитель (НОД) чисел 105 и 450.

Итак, найдём НОД чисел 105 и 450:

Теперь делим числитель и знаменатель нашего ответа на НОД, который мы сейчас нашли, то есть на 15

Представление целого числа в виде дроби

Любое целое число можно представить в виде дроби. Например, число 5 можно представить как . От этого пятёрка своего значения не поменяет, поскольку выражение означает «число пять разделить на единицу», а это, как известно равно пятёрке:

Обратные числа

Сейчас мы познакомимся с очень интересной темой в математике. Она называется «обратные числа».

Определение. Обратным к числу a называется число, которое при умножении на a даёт единицу.

Давайте подставим в это определение вместо переменной a число 5 и попробуем прочитать определение:

Обратным к числу 5 называется число, которое при умножении на 5 даёт единицу.

Можно ли найти такое число, которое при умножении на 5, даёт единицу? Оказывается можно. Представим пятёрку в виде дроби:

Затем умножить эту дробь на саму себя, только поменяем местами числитель и знаменатель. Другими словами, умножим дробь на саму себя, только перевёрнутую:

Что получится в результате этого? Если мы продолжим решать этот пример, то получим единицу:

Значит обратным к числу 5, является число , поскольку при умножении 5 на получается единица.

Обратное число можно найти также для любого другого целого числа.

Найти обратное число можно также для любой другой дроби. Для этого достаточно перевернуть её.

Деление дроби на число

Допустим, у нас имеется половина пиццы:

Разделим её поровну на двоих. Сколько пиццы достанется каждому?

Видно, что после разделения половины пиццы получилось два равных кусочка, каждый из которых составляет пиццы. Значит каждому достанется по пиццы.

1. Правило сложения дробей с одинаковыми знаменателями:

Пример 1:

Пример 2:

Правило сложения дробей с разными знаменателями:

Пример 1:

Пример 2:

Здесь знаменатели не перемножали, а взяли наименьший общий множитель a2.
(В знаменателе старшая степень 2.)
Дополнительный множитель для первой дроби 1, для второй а.

2. Правило вычитания дробей с одинаковыми знаменателями:

Правило вычитания дробей с разными знаменателями:

3. Правило умножения обыкновенных дробей:

4. Правило деления дробей:

Пример:

Обыкновенная (простая) дробь. Числитель и знаменатель дроби.
Правильная и неправильная дробь. Смешанное число.
Неполное частное. Целая и дробная часть. Обратные дроби. Часть единицы или несколько её частей называются обыкновенной или простой дробью . Количество равных частей, на которые делится единица, называется знаменателем , а количество взятых частей – числителем . Дробь записывается в виде:


Здесь 3 – числитель, 7 – знаменатель.

Если числитель меньше знаменателя, то дробь меньше 1 и называется правильной дробью . Если числитель равен знаменателю, то дробь равна 1. Если числитель больше знаменателя, то дробь больше 1. В обоих последних случаях дробь называется неправильной . Если числитель делится на знаменатель, то эта дробь равна частному от деления: 63 / 7 = 9. Если деление выполняется с остатком, то эта неправильная дробь может быть представлена смешанным числом :

Здесь 9 – неполное частное (целая часть смешанного числа), 2 – остаток (числитель дробной части ), 7 – знаменатель.
Часто бывает необходимо решать обратную задачу – обратить смешанное число в дробь . Для этого умножаем целую часть смешанного числа на знаменатель и прибавляем числитель дробной части . Это будет числитель обыкновенной дроби, а знаменатель остаётся прежним.

Обратные дроби – это две дроби, произведение которых равно 1. Например, 3 / 7 и 7 / 3 ; 15 / 1 и 1 / 15 и т.д.

Расширение дроби. Сокращение дроби. Сравнение дробей.
Приведение к общему знаменателю. Сложение и вычитание дробей.
Умножение дробей. Деление дробей
Расширение дроби. Значение дроби не меняется, если умножить её числитель и знаменатель на одно и то же число, отличное от нулярасширением дробиНапример,


Сокращение дроби. Значение дроби не меняется, если разделить её числитель и знаменатель на одно и то же число, отличное от нуля . Это преобразование называется сокращением дроби . Например,

Сравнение дробей. Из двух дробей с одинаковыми числителями та больше, знаменатель которой меньше:


Из двух дробей с одинаковыми знаменателями та больше, числитель которой больше:


Для сравнения дробей, у которых числители и знаменатели различны, необходимо расширить их, чтобы привести к общему знаменателю.
П р и м е р. Сравнить две дроби:

Использованное здесь преобразование называется приведением дробей к общему знаменателю .
Сложение и вычитание дробей. Если знаменатели дробей одинаковы, то для того, чтобы сложить дроби, надо сложить их числители, а для того, чтобы вычесть дроби, надо вычесть их числители (в том же порядке). Полученная сумма или разность будет числителем результата; знаменатель останется тем же. Если знаменатели дробей различны, необходимо сначала привести дроби к общему знаменателю. При сложении смешанных чисел их целые и дробные части складываются отдельно. При вычитании смешанных чисел мы рекомендуем сначала преобразовать их к виду неправильных дробей, затем вычесть из одной другую, а после этого вновь привести результат, если требуется, к виду смешанного числа.
П р и м е р.


Умножение дробей. Умножить некоторое число на дробь означает умножить его на числитель и разделить произведение на знаменатель. Следовательно, мы имеем общее правило умножения дробей: для перемножения дробей необходимо перемножить отдельно их числители и знаменатели и разделить первое произведение на второе .
П р и м е р.
Деление дробей. я того, чтобы разделить некоторое число на дробь, необходимо умножить это число на обратную дробьЭто правило вытекает из определения деления (см. раздел “Арифметические операции”).
П р и м е р.

Десятичная дробь. Целая часть. Десятичная точка.
Десятичные знаки. Свойства десятичных дробей.
Периодическая десятичная дробь. Период
Десятичная дробь есть результат деления единицы на десять, сто, тысячу и т.д. частей. Эти дроби очень удобны для вычислений, так как они основаны на той же позиционной системе, на которой построены счёт и запись целых чисел. Благодаря этому запись и правила действий с десятичными дробями фактически те же, что и для целых чисел. При записи десятичных дробей нет необходимости отмечать знаменатель, это определяется местом, которое занимает соответствующая цифра. Сначала пишется целая часть числа, затем справа ставится десятичная точка . Первая цифра после десятичной точки означает число десятых, вторая – число сотых, третья – число тысячных и т.д. Цифры, расположенные после десятичной точки, называются десятичными знаками .
П р и м е р.
Одно из преимуществ десятичных дробей – они легко приводятся к виду обыкновенных: число после десятичной точки (в нашем случае 5047) – это числитель; знаменатель же равен n –ой степени 10, где n — количество десятичных знаков (в нашем случае n = 4):
Если десятичная дробь не содержит целой части, то перед десятичной точкой ставится ноль:

Свойства десятичных дробей.

1. Десятичная дробь не меняется, если справа добавить нули :

2. Десятичная дробь не меняется, если удалить нули, расположенные
в конце десятичной дроби :

0.00123000 = 0.00123 .

Внимание!Нельзя удалять нули, расположенные не в конце десятичной дроби!br />

Эти свойства позволяют быстро умножать и делить десятичные дроби на 10, 100, 1000 и т.д.

Периодическая десятичная дробь одержит бесконечно повторяющуюся группу цифр, называемую периодом . Период записывается в скобках. Например, 0.12345123451234512345… = 0.(12345).

П р и м е р. Если разделить 47 на 11, то получим 4.27272727… = 4.(27).


Умножение десятичных дробей.
Деление десятичных дробей.

Сложение и вычитание десятичных дробей. Эти операции выполняются так же, как и сложение и вычитание целых чисел. Необходимо только записать соответствующие десятичные знаки один под другим.
П р и м е р.

Умножение десятичных дробей. На первом этапе перемножаем десятичные дроби как целые числа, не принимая во внимание десятичную точку. Затем применяется следующее правило: количество десятичных знаков в произведении равно сумме десятичных знаков во всех сомножителях .
Замечание : до простановки десятичной точки в произведении нельзя отбрасывать нули в конце !
П р и м е р.

Сумма чисел десятичных знаков в сомножителях равна: 3 + 4 = 7. Сумма цифр в произведении равна 6. Поэтому необходимо добавить один ноль слева: 0197056 и проставить перед ним десятичную точку: 0.0197056.
Деление десятичных дробей
Деление десятичной дроби на целое число
Если делимое меньше делителя , записываем ноль в целой части частного и ставим после него десятичную точку. Затем, не принимая во внимание десятичную точку делимого, присоединяем к его целой части следующую цифру дробной части и опять сравниваем полученную целую часть делимого с делителем. Если новое число опять меньше делителя, ставим ещё один ноль после десятичной точки в частном и присоединяем к целой части делимого следующую цифру его дробной части. Этот процесс повторяем до тех пор, пока полученное делимое не станет больше делителя. После этого деление выполняется, как для целых чисел. Если делимое больше делителя или равно ему , сначала делим его целую часть, записываем результат деления в частном и ставим десятичную точку. После этого деление продолжается, как в случае целых чисел.
П р и м е р. Разделить 1.328 на 64.
Р е ш е н и е:
Деление одной десятичной дроби на другую.
Сначала переносим десятичные точки в делимом и делителе на число десятичных знаков в делителе, то есть делаем делитель целым числом. Теперь выполняем деление, как в предыдущем случае.
П р и м е р. Разделить 0.04569 на 0.0006.
Р е ш е н и е. Переносим десятичные точки на 4 позиции вправо и делим 456.9 на 6:

Для того, чтобы обратить десятичную дробь в обыкновенную, надо в качестве числителя взять число, стоящее после десятичной точки, а в качестве знаменателя взять n-ую степень десяти ( здесь n – количество десятичных знаков ). Отличная от нуля целая часть сохраняется в обыкновенной дроби; нулевая целая часть опускается. Например:
Для того, чтобы обратить обыкновенную дробь в десятичную, надо разделить числитель на знаменатель в соответствии с правилами деления .
П р и м е р. Обратить 5 / 8 в десятичную дробь.
Р е ш е н и е. Деля 5 на 8, получаем 0.625. (Проверьте, пожалуйста!).
В большинстве случаев этот процесс может продолжаться бесконечно. Тогда невозможно точно обратить обыкновенную дробь в десятичную. Но на практике это никогда и не требуется. Деление прерывается, если представляющие интерес десятичные знаки уже получены.
П р и м е р. Обратить 1 / 3 в десятичную дробь.
Р е ш е н и е. Деление 1 на 3 будет бесконечным: 1:3 = 0.3333… .
Проверьте это, пожалуйста!

Как решать дроби формулы. Как складывать дроби с разными знаменателями

Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, являющихся знаменателями заданных дробей.

К числителям заданных дробей нужно поставить дополнительные множители, равные отношению НОК и соответствующего знаменателя.

Числители заданных дробей умножаются на свои дополнительные множители, получаются числители дробей с единым общим знаменателем. Знаки действий («+» или «-») в записи дробей, приводимых к общему знаменателю, сохраняются перед каждой дробью. У дробей с общим знаменателем знаки действий сохраняются перед каждым приведенным числителем.

Только теперь можно сложить или вычесть числители и подписать под результатом общий знаменатель.

Внимание! Если в результирующей дроби у числителя и знаменателя есть общие множители, то дробь надо сократить. Неправильную дробь желательно перевести в смешанную дробь. Оставить результат сложения или вычитания, не сократив дробь, где это возможно, — это неоконченное решение примера!

Сложение и вычитание дробей с разными знаменателями . Правило. Чтобы сложить или вычесть дроби с разными знаменателями , нужно их сначала привести к наименьшему общему знаменателю, а потом производить действия сложения или вычитания как с дробями с одинаковыми знаменателями.

Порядок действий при сложении и вычитании дробей с разными знаменателями

  1. найти НОК всех знаменателей;
  2. проставить к каждой дроби дополнительные множители;
  3. умножить каждый числитель на дополнительный множитель;
  4. полученные произведения взять числителями, подписав под каждой дробью общий знаменатель;
  5. произвести сложение или вычитание числителей дробей, подписав под суммой или разностью общий знаменатель.

Так же производится сложение и вычитание дробей при наличии в числителе букв.

Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия — в том же порядке, как и для обычных чисел. А именно:

  1. Сначала выполняется возведение в степень — избавьтесь от всех выражений, содержащих показатели;
  2. Затем — деление и умножение;
  3. Последним шагом выполняется сложение и вычитание.

Разумеется, если в выражении присутствуют скобки, порядок действий изменяется — все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем — деление. Заметим, что 14 = 7 · 2 . Тогда:

Наконец, считаем третий пример. Здесь есть скобки и степень — их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно — знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

Многоэтажные дроби

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

Задача. Переведите многоэтажные дроби в обычные:

В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

В последнем примере перед окончательным умножением дроби были сокращены.

Специфика работы с многоэтажными дробями

В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

  1. В числителе стоит отдельное число 7, а в знаменателе — дробь 12/5;
  2. В числителе стоит дробь 7/12, а в знаменателе — отдельное число 5.

Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно — в несколько раз.

Если следовать этому правилу, то приведенные выше дроби надо записать так:

Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок — пара примеров, где действительно возникают многоэтажные дроби:

Задача. Найдите значения выражений:

Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем — частное.

Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

Следующее действие, которое можно выполнять с обыкновенными дробями, — вычитание. В рамках этого материала мы рассмотрим, как правильно вычислить разность дробей с одинаковыми и разными знаменателями, как вычесть дробь из натурального числа и наоборот. Все примеры будут проиллюстрированы задачами. Заранее уточним, что мы будем разбирать лишь случаи, когда разность дробей дает в итоге положительное число.

Как найти разность дробей с одинаковыми знаменателями

Начнем сразу с наглядного примера: допустим, у нас есть яблоко, которое разделили на восемь частей. Оставим пять частей на тарелке и заберем две из них. Это действие можно записать так:

В итоге у нас осталось 3 восьмых доли, поскольку 5 − 2 = 3 . Получается, что 5 8 — 2 8 = 3 8 .

Благодаря этому простому примеру мы увидели, как именно работает правило вычитания для дробей, знаменатели которых одинаковы. Сформулируем его.

Определение 1

Чтобы найти разность дробей с одинаковыми знаменателями, нужно из числителя одной вычесть числитель другой, а знаменатель оставить прежним. Это правило можно записать в виде a b — c b = a — c b .

Такую формулу мы будем использовать и в дальнейшем.

Возьмем конкретные примеры.

Пример 1

Вычтите из дроби 24 15 обыкновенную дробь 17 15 .

Решение

Мы видим, что эти дроби имеют одинаковые знаменатели. Поэтому все, что нам нужно сделать, – это вычесть 17 из 24 . Мы получаем 7 и дописываем к ней знаменатель, получаем 7 15 .

Наши подсчеты можно записать так: 24 15 — 17 15 = 24 — 17 15 = 7 15

Если необходимо, можно сократить сложную дробь или выделить целую часть из неправильной, чтобы считать было удобнее.

Пример 2

Найдите разность 37 12 — 15 12 .

Решение

Воспользуемся описанной выше формулой и подсчитаем: 37 12 — 15 12 = 37 — 15 12 = 22 12

Легко заметить, что числитель и знаменатель можно разделить на 2 (об этом мы уже говорили ранее, когда разбирали признаки делимости). Сократив ответ, получим 11 6 . Это неправильная дробь, из которой мы выделим целую часть: 11 6 = 1 5 6 .

Как найти разность дробей с разными знаменателями

Такое математическое действие можно свести к тому, что мы уже описывали выше. Для этого просто приведем нужные дроби к одному знаменателю. Сформулируем определение:

Определение 2

Чтобы найти разность дробей, у которых разные знаменатели, необходимо привести их к одному знаменателю и найти разность числителей.

Рассмотрим на примере, как это делается.

Пример 3

Вычтите из 2 9 дробь 1 15 .

Решение

Знаменатели разные, и нужно привести их к наименьшему общему значению. В данном случае НОК равно 45 . Для первой дроби необходим дополнительный множитель 5 , а для второй – 3 .

Подсчитаем: 2 9 = 2 · 5 9 · 5 = 10 45 1 15 = 1 · 3 15 · 3 = 3 45

У нас получились две дроби с одинаковым знаменателем, и теперь мы легко можем найти их разность по описанному ранее алгоритму: 10 45 — 3 45 = 10 — 3 45 = 7 45

Краткая запись решения выглядит так: 2 9 — 1 15 = 10 45 — 3 45 = 10 — 3 45 = 7 45 .

Не стоит пренебрегать сокращением результата или выделением из него целой части, если это необходимо. В данном примере нам этого не нужно делать.

Пример 4

Найдите разность 19 9 — 7 36 .

Решение

Приведем указанные в условии дроби к наименьшему общему знаменателю 36 и получим соответственно 76 9 и 7 36 .

Считаем ответ: 76 36 — 7 36 = 76 — 7 36 = 69 36

Результат можно сократить на 3 и получить 23 12 . Числитель больше знаменателя, а значит, мы можем выделить целую часть. Итоговый ответ — 1 11 12 .

Краткая запись всего решения — 19 9 — 7 36 = 1 11 12 .

Как вычесть из обыкновенной дроби натуральное число

Такое действие также легко свести к простому вычитанию обыкновенных дробей. Это можно сделать, представив натуральное число в виде дроби. Покажем на примере.

Пример 5

Найдите разность 83 21 – 3 .

Решение

3 – то же самое, что и 3 1 . Тогда можно подсчитать так: 83 21 — 3 = 20 21 .

Если в условии необходимо вычесть целое число из неправильной дроби, удобнее сначала выделить из нее целое, записав ее в виде смешанного числа. Тогда предыдущий пример можно решить иначе.

Из дроби 83 21 при выделении целой части получится 83 21 = 3 20 21 .

Теперь просто вычтем 3 из него: 3 20 21 — 3 = 20 21 .

Как вычесть обыкновенную дробь из натурального числа

Это действие делается аналогично предыдущему: мы переписываем натуральное число в виде дроби, приводим обе к единому знаменателю и находим разность. Проиллюстрируем это примером.

Пример 6

Найдите разность: 7 — 5 3 .

Решение

Сделаем 7 дробью 7 1 . Делаем вычитание и преобразуем конечный результат, выделяя из него целую часть: 7 — 5 3 = 5 1 3 .

Есть и другой способ произвести расчеты. Он обладает некоторыми преимуществами, которыми можно воспользоваться в тех случаях, если числители и знаменатели дробей в задаче – большие числа.

Определение 3

Если та дробь, которую нужно вычесть, является правильной, то натуральное число, из которого мы вычитаем, нужно представить в виде суммы двух чисел, одно из которых равно 1 . После этого нужно вычесть нужную дробь из единицы и получить ответ.

Пример 7

Вычислите разность 1 065 — 13 62 .

Решение

Дробь, которую нужно вычесть – правильная, ведь ее числитель меньше знаменателя. Поэтому нам нужно отнять единицу от 1065 и вычесть из нее нужную дробь: 1065 — 13 62 = (1064 + 1) — 13 62

Теперь нам нужно найти ответ. Используя свойства вычитания, полученное выражение можно записать как 1064 + 1 — 13 62 . Подсчитаем разность в скобках. Для этого единицу представим как дробь 1 1 .

Получается, что 1 — 13 62 = 1 1 — 13 62 = 62 62 — 13 62 = 49 62 .

Теперь вспомним про 1064 и сформулируем ответ: 1064 49 62 .

Используем старый способ, чтобы доказать, что он менее удобен. Вот такие вычисления вышли бы у нас:

1065 — 13 62 = 1065 1 — 13 62 = 1065 · 62 1 · 62 — 13 62 = 66030 62 — 13 62 = = 66030 — 13 62 = 66017 62 = 1064 4 6

Ответ тот же, но подсчеты, очевидно, более громоздкие.

Мы рассмотрели случай, когда нужно вычесть правильную дробь. Если она неправильная, мы заменяем ее смешанным числом и производим вычитание по знакомым правилам.

Пример 8

Вычислите разность 644 — 73 5 .

Решение

Вторая дробь – неправильная, и от нее надо отделить целую часть.

Теперь вычисляем аналогично предыдущему примеру: 630 — 3 5 = (629 + 1) — 3 5 = 629 + 1 — 3 5 = 629 + 2 5 = 629 2 5

Свойства вычитания при работе с дробями

Те свойства, которыми обладает вычитание натуральных чисел, распространяются и на случаи вычитания обыкновенных дробей. Рассмотрим, как использовать их при решении примеров.

Пример 9

Найдите разность 24 4 — 3 2 — 5 6 .

Решение

Схожие примеры мы уже решали, когда разбирали вычитание суммы из числа, поэтому действуем по уже известному алгоритму. Сначала подсчитаем разность 25 4 — 3 2 , а потом отнимем от нее последнюю дробь:

25 4 — 3 2 = 24 4 — 6 4 = 19 4 19 4 — 5 6 = 57 12 — 10 12 = 47 12

Преобразуем ответ, выделив из него целую часть. Итог — 3 11 12 .

Краткая запись всего решения:

25 4 — 3 2 — 5 6 = 25 4 — 3 2 — 5 6 = 25 4 — 6 4 — 5 6 = = 19 4 — 5 6 = 57 12 — 10 12 = 47 12 = 3 11 12

Если в выражении присутствуют и дроби, и натуральные числа, то рекомендуется при подсчетах сгруппировать их по типам.

Пример 10

Н айдите разность 98 + 17 20 — 5 + 3 5 .

Решение

Зная основные свойства вычитания и сложения, мы можем сгруппировать числа следующим образом: 98 + 17 20 — 5 + 3 5 = 98 + 17 20 — 5 — 3 5 = 98 — 5 + 17 20 — 3 5

Завершим расчеты: 98 — 5 + 17 20 — 3 5 = 93 + 17 20 — 12 20 = 93 + 5 20 = 93 + 1 4 = 93 1 4

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

Дроби в старших классах не сильно досаждают. До поры до времени. Пока не столкнётесь со степенями с рациональными показателями да логарифмами. А вот там…. Давишь, давишь калькулятор, а он все полное табло каких-то циферок кажет. Приходится головой думать, как в третьем классе.

Давайте уже разберёмся с дробями, наконец! Ну сколько можно в них путаться!? Тем более, это всё просто и логично. Итак, какие бывают дроби?

Виды дробей. Преобразования.

Дроби бывают трёх видов.

1. Обыкновенные дроби , например:

Иногда вместо горизонтальной чёрточки ставят наклонную черту: 1/2, 3/4, 19/5, ну, и так далее. Здесь мы часто будем таким написанием пользоваться. Верхнее число называется числителем , нижнее — знаменателем. Если вы постоянно путаете эти названия (бывает…), скажите себе с выражением фразу: «Ззззз апомни! Ззззз наменатель — вниззззз у!» Глядишь, всё и ззззапомнится.)

Чёрточка, что горизонтальная, что наклонная, означает деление верхнего числа (числителя) на нижнее (знаменатель). И всё! Вместо чёрточки вполне можно поставить знак деления — две точки.

Когда деление возможно нацело, это надо делать. Так, вместо дроби «32/8» гораздо приятнее написать число «4». Т.е. 32 просто поделить на 8.

32/8 = 32: 8 = 4

Я уж и не говорю про дробь «4/1». Которая тоже просто «4». А если уж не делится нацело, так и оставляем, в виде дроби. Иногда приходится обратную операцию проделывать. Делать из целого числа дробь. Но об этом далее.

2. Десятичные дроби , например:

Именно в таком виде нужно будет записывать ответы на задания «В».

3. Смешанные числа , например:

Смешанные числа практически не используются в старших классах. Для того, чтобы с ними работать, их всяко надо переводить в обыкновенные дроби. Но это точно надо уметь делать! А то попадётся такое число в задачке и зависните… На пустом месте. Но мы-то вспомним эту процедуру! Чуть ниже.

Наиболее универсальны обыкновенные дроби . С них и начнём. Кстати, если в дроби стоят всякие логарифмы, синусы и прочие буковки, это ничего не меняет. В том смысле что все действия с дробными выражениями ничем не отличаются от действий с обыкновенными дробями !

Основное свойство дроби.

Итак, поехали! Для начала я вас удивлю. Всё многообразие преобразований дробей обеспечивается одним-единственным свойством! Оно так и называется, основное свойство дроби . Запоминайте: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, дробь не изменится. Т.е:

Понятно, что писать можно дальше, до посинения. Синусы и логарифмы пусть вас не смущают, с ними дальше разберёмся. Главное понять, что все эти разнообразные выражения есть одна и та же дробь . 2/3.

А оно нам надо, все эти превращения? Ещё как! Сейчас сами увидите. Для начала употребим основное свойство дроби для сокращения дробей . Казалось бы, вещь элементарная. Делим числитель и знаменатель на одно и то же число и все дела! Ошибиться невозможно! Но… человек — существо творческое. Ошибиться везде может! Особенно, если приходится сокращать не дробь типа 5/10, а дробное выражение со всякими буковками.

Как правильно и быстро сокращать дроби, не делая лишней работы, можно прочитать в особом Разделе 555 .

Нормальный ученик не заморачивается делением числителя и знаменателя на одно и то же число (или выражение)! Он просто зачеркивает всё одинаковое сверху и снизу! Здесь-то и таится типичная ошибка, ляп, если хотите.

Например, надо упростить выражение:

Тут и думать нечего, зачеркиваем букву «а» сверху и двойку снизу! Получаем:

Все правильно. Но реально вы поделили весь числитель и весь знаменатель на «а». Если вы привыкли просто зачеркивать, то, впопыхах, можете зачеркнуть «а» в выражении

и получить снова

Что будет категорически неверно. Потому что здесь весь числитель на «а» уже не делится ! Эту дробь сократить нельзя. Кстати, такое сокращение – это, гм… серьезный вызов преподавателю. Такого не прощают! Запомнили? При сокращении делить надо весь числитель и весь знаменатель!

Сокращение дробей сильно облегчает жизнь. Получится где-нибудь у вас дробь, к примеру 375/1000. И как теперь с ней дальше работать? Без калькулятора? Умножать, скажем, складывать, в квадрат возводить!? А если не полениться, да аккуратненько сократить на пять, да ещё на пять, да ещё… пока сокращается, короче. Получим 3/8! Куда приятнее, правда?

Основное свойство дроби позволяет переводить обыкновенные дроби в десятичные и наоборот без калькулятора ! Это важно на ЕГЭ, верно?

Как переводить дроби из одного вида в другой.

С десятичными дробями всё просто. Как слышится, так и пишется! Скажем, 0,25. Это ноль целых, двадцать пять сотых. Так и пишем: 25/100. Сокращаем (делим числитель и знаменатель на 25), получаем обычную дробь: 1/4. Всё. Бывает, и не сокращается ничего. Типа 0,3. Это три десятых, т.е. 3/10.

А если целых — не ноль? Ничего страшного. Записываем всю дробь без всяких запятых в числитель, а в знаменатель — то, что слышится. Например: 3,17. Это три целых, семнадцать сотых. Пишем в числитель 317, а в знаменатель 100. Получаем 317/100. Ничего не сокращается, значит всё. Это ответ. Элементарно, Ватсон! Из всего сказанного полезный вывод: любую десятичную дробь можно превратить в обыкновенную .

А вот обратное преобразование, обыкновенной в десятичную, некоторые без калькулятора не могут сделать. А надо! Как вы ответ записывать будете на ЕГЭ!? Внимательно читаем и осваиваем этот процесс.

Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, 4/10 = 0,4. Или 7/100 = 0,07. Или 12/10 = 1,2. А если в ответе на задание раздела «В» получилось 1/2? Что в ответ писать будем? Там десятичные требуются…

Вспоминаем основное свойство дроби ! Математика благосклонно позволяет умножать числитель и знаменатель на одно и то же число. На любое, между прочим! Кроме нуля, разумеется. Вот и применим это свойство себе на пользу! На что можно умножить знаменатель, т.е. 2 чтобы он стал 10, или 100, или 1000 (поменьше лучше, конечно…)? На 5, очевидно. Смело умножаем знаменатель (это нам надо) на 5. Но, тогда и числитель надо умножить тоже на 5. Это уже математика требует! Получим 1/2 = 1х5/2х5 = 5/10 = 0,5. Вот и всё.

Однако, знаменатели всякие попадаются. Попадётся, например дробь 3/16. Попробуй, сообрази тут, на что 16 умножить, чтоб 100 получилось, или 1000… Не получается? Тогда можно просто разделить 3 на 16. За отсутствием калькулятора делить придётся уголком, на бумажке, как в младших классах учили. Получим 0,1875.

А бывают и совсем скверные знаменатели. Например, дробь 1/3 ну никак не превратишь в хорошую десятичную. И на калькуляторе, и на бумажке, мы получим 0,3333333… Это значит, что 1/3 в точную десятичную дробь не переводится . Так же, как и 1/7, 5/6 и так далее. Много их, непереводимых. Отсюда ещё один полезный вывод. Не каждая обыкновенная дробь переводится в десятичную !

Кстати, это полезная информация для самопроверки. В разделе «В» в ответ надо десятичную дробь записывать. А у вас получилось, например, 4/3. Эта дробь не переводится в десятичную. Это означает, что где-то вы ошиблись по дороге! Вернитесь, проверьте решение.

Итак, с обыкновенными и десятичными дробями разобрались. Осталось разобраться со смешанными числами. Для работы с ними их всяко нужно перевести в обыкновенные дроби. Как это сделать? Можно поймать шестиклассника и спросить у него. Но не всегда шестиклассник окажется под руками… Придётся самим. Это несложно. Надо знаменатель дробной части умножить на целую часть и прибавить числитель дробной части. Это будет числитель обычной дроби. А знаменатель? Знаменатель останется тем же самым. Звучит сложно, но на деле всё элементарно. Смотрим пример.

Пусть в задачке вы с ужасом увидели число:

Спокойно, без паники соображаем. Целая часть — это 1. Единица. Дробная часть — 3/7. Стало быть, знаменатель дробной части — 7. Этот знаменатель и будет знаменателем обыкновенной дроби. Считаем числитель. 7 умножаем на 1 (целая часть) и прибавляем 3 (числитель дробной части). Получим 10. Это будет числитель обыкновенной дроби. Вот и всё. Еще проще это выглядит в математической записи:

Ясненько? Тогда закрепите успех! Переведите в обыкновенные дроби. У вас должно получится 10/7, 7/2, 23/10 и 21/4.

Обратная операция — перевод неправильной дроби в смешанное число — в старших классах редко требуется. Ну если уж… И если Вы — не в старших классах — можете заглянуть в особый Раздел 555 . Там же, кстати, и про неправильные дроби узнаете.

Ну вот, практически и всё. Вы вспомнили виды дробей и поняли, как переводить их из одного вида в другой. Остаётся вопрос: зачем это делать? Где и когда применять эти глубокие познания?

Отвечаю. Любой пример сам подсказывает необходимые действия. Если в примере смешались в кучу обыкновенные дроби, десятичные, да ещё и смешанные числа, переводим всё в обыкновенные дроби. Это всегда можно сделать . Ну а если написано, что-нибудь типа 0,8 + 0,3, то так и считаем, безо всякого перевода. Зачем нам лишняя работа? Мы выбираем тот путь решения, который удобен нам !

Если в задании сплошь десятичные дроби, но гм… злые какие-то, перейдите к обыкновенным, попробуйте! Глядишь, всё и наладится. Например, придется в квадрат возводить число 0,125. Не так-то просто, если от калькулятора не отвыкли! Мало того, что числа перемножать столбиком надо, так ещё думай, куда запятую вставить! В уме точно не получится! А если перейти к обыкновенной дроби?

0,125 = 125/1000. Сокращаем на 5 (это для начала). Получаем 25/200. Ещё раз на 5. Получаем 5/40. О, ещё сокращается! Снова на 5! Получаем 1/8. Легко возводим в квадрат (в уме!) и получаем 1/64. Всё!

Подведём итоги этого урока.

1. Дроби бывают трёх видов. Обыкновенные, десятичные и смешанные числа.

2. Десятичные дроби и смешанные числа всегда можно перевести в обыкновенные дроби. Обратный перевод не всегда возможен.

3. Выбор вида дробей для работы с заданием зависит от этого самого задания. При наличии разных видов дробей в одном задании, самое надёжное — перейти к обыкновенным дробям.

Теперь можно потренироваться. Для начала переведите эти десятичные дроби в обыкновенные:

3,8; 0,75; 0,15; 1,4; 0,725; 0,012

Должны получиться вот такие ответы (в беспорядке!):

На этом и завершим. В этом уроке мы освежили в памяти ключевые моменты по дробям. Бывает, правда, что освежать особо нечего…) Если уж кто совсем крепко забыл, или ещё не освоил… Тем можно пройти в особый Раздел 555 . Там все основы подробненько расписаны. Многие вдруг всё понимать начинают. И решают дроби с лёту).

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

) и знаменатель на знаменатель (получим знаменатель произведения).

Формула умножения дробей:

Например:

Перед тем, как приступить к умножению числителей и знаменателей, необходимо проверить на возможность сокращения дроби . Если получится сократить дробь, то вам легче будет дальше производить расчеты.

Деление обыкновенной дроби на дробь.

Деление дробей с участием натурального числа.

Это не так страшно, как кажется. Как и в случае со сложением , переводим целое число в дробь с единицей в знаменателе. Например:

Умножение смешанных дробей.

Правила умножения дробей (смешанных):

  • преобразовываем смешанные дроби в неправильные;
  • перемножаем числители и знаменатели дробей;
  • сокращаем дробь;
  • если получили неправильную дробь, то преобразовываем неправильную дробь в смешанную.

Обратите внимание! Чтобы умножить смешанную дробь на другую смешанную дробь, нужно, для начала, привести их к виду неправильных дробей, а далее умножить по правилу умножения обыкновенных дробей.

Второй способ умножения дроби на натуральное число.

Бывает более удобно использовать второй способ умножения обыкновенной дроби на число.

Обратите внимание! Для умножения дроби на натуральное число необходимо знаменатель дроби разделить на это число, а числитель оставить без изменения.

Из, приведенного выше, примера понятно, что этот вариант удобней для использования, когда знаменатель дроби делится без остатка на натуральное число.

Многоэтажные дроби.

В старших классах зачастую встречаются трехэтажные (или больше) дроби. Пример:

Чтобы привести такую дробь к привычному виду, используют деление через 2 точки:

Обратите внимание! В делении дробей очень важен порядок деления. Будьте внимательны, здесь легко запутаться.

Обратите внимание, например:

При делении единицы на любую дробь, результатом будет таже самая дробь, только перевернутая:

Практические советы при умножении и делении дробей:

1. Самым важным в работе с дробными выражениями является аккуратность и внимательность. Все вычисления делайте внимательно и аккуратно, сосредоточенно и чётко. Лучше запишите несколько лишних строчек в черновике, чем запутаться в расчетах в уме.

2. В заданиях с разными видами дробей — переходите к виду обыкновенных дробей.

3. Все дроби сокращаем до тех пор, пока сокращать уже будет невозможно.

4. Многоэтажные дробные выражения приводим в вид обыкновенных, пользуясь делением через 2 точки.

5. Единицу на дробь делим в уме, просто переворачивая дробь.

замечательные пределы простым языком — Налоговые Консультанты





На практике у студентов-заочников практически всегда возникает необходимость использовать первый и второй замечательные пределы, о которых и идет речь в данной справке. Также рассмотрены еще три замечательных предела, которые встречаются значительно реже. Все замечательные пределы снабжены дополнительными важными комментариями. Кроме того, файл дополнен информацией о замечательных эквивалентностях.

На данной странице Вы можете посмотреть или бесплатно скачать самые востребованные математические формулы, таблицы, а также справочные материалы по высшей математике. Все математические таблицы составлены лично мной и снабжены дополнительными комментариями. Сделано это в целях преодоления трудностей, с которыми часто сталкиваются студенты-заочники в ходе решения задач. Я не претендую на всеобъемлющую полноту материалов, но то, что ОЧЕНЬ ЧАСТО встречается, Вы найдете.

Рассмотрим, например, таблицу тригонометрических формул. Тригонометрических формул достаточно много, они давно известны, и нет никакого смысла переписывать справочники. А вот те формулы, которые очень часто используются для решения задач курса высшей математики, собраны воедино, и могут быть очень полезны при выполнении практических заданий. При этом в комментариях я указываю, в каком разделе высшей математики (пределы, производные, интегралы, и т.д.) практически всегда фигурирует та или формула.

Итак, прямо сейчас у Вас есть бесплатный доступ к ценным справочным материалам, возможен, как онлайн-просмотр, так и скачивание. Удобнее всего сразу распечатать математические таблицы и справочные материалы, которые Вас заинтересуют. Как показывает практика, информация на экране монитора усваивается хуже, чем на бумаге, да и читать с монитора труднее.

Почти все файлы размещены прямо на сайте, а значит, могут быть получены в максимально короткие срок, ограниченный только скоростью Вашего Интернет-подключения.

Рекомендую просмотреть всем. Данные формулы встречаются в ходе решения задач по высшей математике буквально на каждом шагу. Без знания этих формул – никуда. С чего начать изучение высшей математики? С повторения этого. Независимо от уровня Вашей математической подготовки на данный момент, крайне желательно СРАЗУ ВИДЕТЬ возможность выполнения элементарных действий, применения простейших формул в ходе решения пределов, интегралов, дифференциальных уравнений и т.д.

В справочнике есть краткая информация о модуле, формулы сокращенного умножения, алгоритм решения квадратного уравнения, правила упрощения многоэтажных дробей, а также важнейшие свойства степеней и логарифмов.

Универсальный калькулятор реализован в рабочей книге MS Excel и на данный момент содержит три листа. Программа может заменить обычный калькулятор с множеством функций. Любые степени, корни, логарифмы, тригонометрические функции, арки – без проблем! Кроме того, калькулятор в автоматическом режиме выполняет основные действия с матрицами, считает определители (до определителя 5 на 5 включительно), мгновенно находит миноры и алгебраические дополнения матриц. За считанные секунды можно решить систему линейных уравнений с помощью обратной матрицы и по формулам Крамера, посмотреть основные этапы решения. Всё это очень удобно для самопроверки. Просто введите свои числа и получите готовый результат!

Приведены самые «ходовые» тригонометрические формулы, которые применяются в ходе решения задач по высшей математике. На самом деле таких формул НЕМНОГО, и, собирать десятки других по различным математическим справочникам – пустая трата времени. Всё (или почти всё), что может потребоваться – здесь.

При выполнении заданий по математике нередко возникает необходимость заглянуть в тригонометрические таблицы. В данном справочном материале представлена таблица значений тригонометрических функций (синуса, косинуса, тангенса и котангенса) при значениях аргумента от нуля до 360 градусов. Держать в памяти данную информацию нет никакого смысла, но некоторые значения тригонометрических функций хорошо бы знать. Также представлены формулы приведения для вышеуказанных тригонометрических функций,иногда (чаще всего при решении пределов) требуются. По просьбам посетителей сайта в pdf-файл добавлена таблица значений обратных тригонометрических функций и две формулы: формула перевода градусов в радианы, формула перевода радианов в градусы.

Методический материал представляет собой обзор графиков основных элементарных функций и их свойств. Будет полезен при изучении практически всех разделов высшей математики, более того, справочное пособие поможет вам намного лучше и качественнееразобраться в некоторых темах. Также вы сможете узнать, какие значения функций следуетзнать наизусть, чтобы не получить «два автоматом» при ответе на простейший вопрос экзаменатора. Справка выполнена в форме веб-страницы и содержит много графиков функций, которые также желательно помнить. По мере развития проекта методичка стала играть роль вводного урока по теме «Функции и графики».

На практике у студентов-заочников практически всегда возникает необходимость использовать первый и второй замечательные пределы, о которых и идет речь в данной справке. Также рассмотрены еще три замечательных предела, которые встречаются значительно реже. Все замечательные пределы снабжены дополнительными важными комментариями. Кроме того, файл дополнен информацией о замечательных эквивалентностях.

В справке приведены правила дифференцирования и таблица производных от основных элементарных функций. Таблица снабжена очень важными примечаниями.

Ваш гид по разделу «Функции и графики». В pdf-ке систематизирована и законспектирована информация об основных этапах исследования функции одной переменной. Руководство сопровождается ссылками, а значит, экономит массу времени. Мануал полезен как чайнику, так и подготовленному читателю.

В общем-то, почти то же самое, что в дифференциальном исчислении. Правила интегрирования и таблица интегралов с моими комментариями.

Справочный материал незаменим при изучении степенных рядов. В таблице представлены разложения в степенной ряд следующих функций: экспоненты, синуса, косинуса, логарифма, арктангенса и арксинуса. Также приведено биномиальное разложение и наиболее распространенные частные случаи биномиального разложения. Разложение функции в ряд является самостоятельным заданием, используется для приближенных вычислений, приближенных вычислений определенного интеграла и в некоторых других задачах.

Основной трудностью при решении неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами является правильный подбор частного решения по виду правой части. Данная методичка, относится, прежде всего, к уроку Как решить неоднородное уравнение второго порядка? и поможет вам легко разобраться в подборе частного решения. Справка не претендует на основательную научную полноту, она написана простым и понятным языком, однако в 99,99% случаев в ней найдется именно тот случай, который вы ищете.

Справка незаменима в ходе решения прикладных задач комплексного анализа – нахождения частного решения ДУ операционным методом и нахождения частного решения системы ДУ этим же способом. Таблица отличается от аналогов тем, что «заточена» именно под вышеуказанные задания, данная особенность позволяет легко освоить алгоритмы решения. Приведено как прямое, так и обратное преобразование Лапласа для наиболее распространенных функций. В случае если информации окажется недостаточно, рекомендую обратиться к солидному математическому справочнику – полная версия содержит более сотни пунктов.

Специальные расчётные программы:

В данном разделе вы можете найти вспомогательные программы для решения узколокальных математических задач. Они помогут вам быстро выполнить расчёты и оформить решение.

Данная полуавтоматическая программа относится к уроку Формула трапеций, формула Симпсона и помогает рассчитать приближенное значение определенного интеграла на 2, 4, 8, 10 и 20-ти отрезках разбиения. Прилагается видеоурок по работе с калькулятором. Вычислите ваш определенный интеграл в считанные минуты, и даже секунды!

На данный момент пока всё.

Данный раздел постепенно будет пополняться дополнительными справочными материалами. Каждое справочное пособие постоянно улучшается, в том числе, с учетом Ваших пожеланий и замечаний! Если Вы считаете, что упущено что-то важное, нашли какие-либо неточности, а может быть что-то разъяснено недостаточно понятно, обязательно пишите! Связаться со мной можно единственным способом – через форму обратной связи.

Справка выполнена в форме веб-страницы и содержит много графиков функций, которые также желательно помнить. Прилагается видеоурок по работе с калькулятором. Приведены самые ходовые тригонометрические формулы, которые применяются в ходе решения задач по высшей математике.

Эта страница отображается в тех случаях, когда автоматическими системами Google регистрируются исходящие из вашей сети запросы, которые нарушают Условия использования. Страница перестанет отображаться после того, как эти запросы прекратятся. До этого момента для использования служб Google необходимо проходить проверку по слову.

Об этой странице

Мы зарегистрировали подозрительный трафик, исходящий из вашей сети. С помощью этой страницы мы сможем определить, что запросы отправляете именно вы, а не робот. Почему это могло произойти?

Эта страница отображается в тех случаях, когда автоматическими системами Google регистрируются исходящие из вашей сети запросы, которые нарушают Условия использования. Страница перестанет отображаться после того, как эти запросы прекратятся. До этого момента для использования служб Google необходимо проходить проверку по слову.

Источником запросов может служить вредоносное ПО, подключаемые модули браузера или скрипт, настроенный на автоматических рассылку запросов. Если вы используете общий доступ в Интернет, проблема может быть с компьютером с таким же IP-адресом, как у вас. Обратитесь к своему системному администратору. Подробнее.

Проверка по слову может также появляться, если вы вводите сложные запросы, обычно распространяемые автоматизированными системами, или же вводите запросы очень часто.

Эта страница отображается в тех случаях, когда автоматическими системами Google регистрируются исходящие из вашей сети запросы, которые нарушают Условия использования. Обратитесь к своему системному администратору. С помощью этой страницы мы сможем определить, что запросы отправляете именно вы, а не робот.

При вычислениях помните, что любое число, делённое на бесконечность, есть бесконечно малая величина, которую при расчётах можно принять равной нулю.

При вычислениях помните, что любое число, делённое на бесконечность, есть бесконечно малая величина, которую при расчётах можно принять равной нулю.

Пользуйтесь теоремами о пределах для решения простейших задач, в особенности тригонометрических, но не забывайте просчитывать, к чему стремится выражение под знаком предела.

При затруднениях используйте онлайн-калькуляторы, которые можно легко найти в интернете.

Выносите постоянные множители (числа) за знак предела.

Выносите постоянные множители числа за знак предела. Как посчитать предел.

https://sites.google.com/site/matematikalucsaanaukaivseokej/nasi-formuly

https://www.kakprosto.ru/kak-104151-kak-nahodit-predely-funkciy

Записи с меткой «найти значение выражения». Нахождение значения выражения, примеры, решения

Вы, как родители, в процессе обучения своего ребенка, не раз столкнетесь с необходимостью помощи в решении домашних задач по математике, алгебре и геометрии. И одно из базовых умений, которое необходимо усвоить — как найти значение выражения. Многие заходят в тупик, ведь сколько лет прошло с того момента, как мы учились в 3-5 классах? Многое уже забылось, а что-то не училось. Сами правила математических действий — просты и вы легко их вспомните. Начнем с самых основ, что такое математическое выражение.

Определение выражения

Математическое выражение — совокупность чисел, знаков действий (=, +,-, *, /), скобок, переменных. Кратко — это формула, значение которой нужно будет найти. Такие формулы как раз встречаются в курсе математики еще со школы, а потом преследуют и студентов, которые выбрали для себя специальности, связанные с точными науками. Математические выражения разделяются на тригонометрические, алгебраические и так далее, не будем забегать в самые «дебри».

  1. Делайте любые вычисления сначала на черновике, а после переписывайте в рабочую тетрадь. Таким образом вы избежите лишних перечеркиваний и грязи;
  2. Пересчитайте общее количество математических действий, которые нужно будет выполнить в выражении. Обратите внимание, что согласно правилам, вначале выполняются действия в скобках, потом деление и умножение и в самом конце вычитание и сложение. Рекомендуем выделить все действия карандашом и поставить цифры над действиями в порядке очередности их выполнения. В этом случае и вам и ребенку будет легче сориентироваться;
  3. Начинайте производить расчеты строго придерживаясь порядка выполнения действий. Пусть ребенок, если расчет простой, старается выполнять его в уме, если же это сложно, то ставьте карандашом цифру, соответствующую порядковому номеру выражения и выполняйте вычисление в письменном виде под формулой;
  4. Как правило, найти значение простого выражения не составляет труда, если все расчеты выполнены в соответствии с правилами и правильным порядком. Большинство сталкиваются с проблемой именно на данном этапе нахождения значения выражения, потому будьте внимательны и не допускайте ошибок;
  5. Запрещайте калькулятор. Сами математические формулы и задачи в жизни вашему ребенка может и не пригодятся, но не в этом цель изучения предмета. Главное — развитие логическое мышления. Если пользоваться калькуляторами, то смысл всего будет потерян;
  6. Ваша задача как родителя — не решать за ребенка задачи, а помогать ему в этом, направлять. Пусть он сам производит все вычисления, а вы следите за тем, чтобы он не допускал ошибок, объясняйте, почему нужно делать так, а не иначе.
  7. После того, как ответ на выражение найден, запишите его после знака «=»;
  8. Откройте последнюю страницу учебника по математике. Обычно, там есть ответы под каждое упражнение в книге. Не мешает свериться, верно ли все посчитано.

Найти значение выражения — с одной стороны, простая процедура, главное вспомнить основные правила, которые мы проходили в школьном курсе математики. Однако, с другой стороны, когда вам нужно помочь малышу справиться с формулами и решением задач, вопрос осложняется. Ведь вы теперь не ученик, а учитель и на ваших плечах лежит воспитание будущего Эйнштейна.

Надеемся, что наша статья помогла вам найти ответ на вопрос, как найти значение выражения, и вы с легкостью раскусите любую формулу!

Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия — в том же порядке, как и для обычных чисел. А именно:

  1. Сначала выполняется возведение в степень — избавьтесь от всех выражений, содержащих показатели;
  2. Затем — деление и умножение;
  3. Последним шагом выполняется сложение и вычитание.

Разумеется, если в выражении присутствуют скобки, порядок действий изменяется — все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем — деление. Заметим, что 14 = 7 · 2 . Тогда:

Наконец, считаем третий пример. Здесь есть скобки и степень — их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно — знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

Многоэтажные дроби

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

Задача. Переведите многоэтажные дроби в обычные:

В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

В последнем примере перед окончательным умножением дроби были сокращены.

Специфика работы с многоэтажными дробями

В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

  1. В числителе стоит отдельное число 7, а в знаменателе — дробь 12/5;
  2. В числителе стоит дробь 7/12, а в знаменателе — отдельное число 5.

Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно — в несколько раз.

Если следовать этому правилу, то приведенные выше дроби надо записать так:

Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок — пара примеров, где действительно возникают многоэтажные дроби:

Задача. Найдите значения выражений:

Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем — частное.

Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

Ответ: _________
2. Товар стоил 3200 р. Сколько стал стоить этот товар после снижения цены на 5%?
А. 3040 р. Б. 304 p. В. 1600 р. Г. 3100 p.
3. Учащиеся класса в среднем выполнили по 7,5 задания из предложенного теста. Максим выполнил 9 заданий. На сколько процентов его результат выше среднего?
Ответ: _________
4. Ряд состоит из натуральных чисел. Какая из следующих статистических характеристик не может выражаться дробным числом?
А. Среднее арифметическое
Б. Мода
В. Медиана
Г. Такой характеристики среди данных нет
5. Какое из уравнений не имеет корней?
A. x =x Б. x =6 В. x =0 Г. x =−5
6. На координатной прямой отмечены числа А и В (рис. 35). Сравните числа –А и В.

А. –А Б. –А > В
В. –А = В
Г. Сравнить невозможно
7. Упростите выражение a (a – 2) – (a – 1)(а + 1).
Ответ: _________
8. Значения каких переменных надо знать, чтобы найти значение выражения (5а – 2b)(5а + 2b) – 4b (3а – b) + 6а (2b – 1)?
А. а и b Б. а В. b
Г. Значение выражения не зависит от значений переменных
9. Решите уравнение (x – 2)2 + 8x = (х – 1)(1 + х).
Ответ: _________
10. Решите систему уравнений { 3x−2y=5, 5x+6y=27.
Ответ: _________
11. За 3 ч езды на автомобиле и 4 ч езды на поезде туристы проехали 620 км, причем скорость поезда была на 10 км/ч больше скорости автомобиля. Каковы скорость поезда и скорость автомобиля?
Обозначив через x км/ч скорость автомобиля и через у км/ч скорость поезда, составили системы уравнений. Какая из них составлена правильно?
А. { 3x+4y=620, x−y=10 Б. { 3x+4y=620, y−x=10
В. { 4x+3y=620, x−y=10 Г. { 4x+3y=620, y−x=10
12. Какая из точек не принадлежит графику функции у = –0,6x + 1?
А. (3; –0,8) Б. (–3; 0,8) B. (2; –0,2) Г. (–2; 2,2)
13. В какой координатной четверти нет ни одной точки графика функции у = –0,6x + 1,5?
Ответ: _________
14. Задайте формулой линейную функцию, график которой пересекает ось х в точке (2; 0) и ось у в точке (0; 7).
Ответ: _________ Помогите

1. Найдите значение выражения a a−1 , если a = 0,25. Ответ: _________ 2. Товар стоил 3200 р. Сколько стал стоить этот товар после снижения цены на 5%?

А. 3040 р. Б. 304 p. В. 1600 р. Г. 3100 p. 3. Учащиеся класса в среднем выполнили по 7,5 задания из предложенного теста. Максим выполнил 9 заданий. На сколько процентов его результат выше среднего? Ответ: _________ 4. Ряд состоит из натуральных чисел. Какая из следующих статистических характеристик не может выражаться дробным числом? А. Среднее арифметическое Б. Мода В. Медиана Г. Такой характеристики среди данных нет 5. Какое из уравнений не имеет корней? A. x =x Б. x =6 В. x =0 Г. x =−5 6. На координатной прямой отмечены числа А и В (рис. 35). Сравните числа –А и В. А. –А В В. –А = В Г. Сравнить невозможно 7. Упростите выражение a (a – 2) – (a – 1)(а + 1). Ответ: _________ 8. Значения каких переменных надо знать, чтобы найти значение выражения (5а – 2b)(5а + 2b) – 4b (3а – b) + 6а (2b – 1)? А. а и b Б. а В. b Г. Значение выражения не зависит от значений переменных 9. Решите уравнение (x – 2)2 + 8x = (х – 1)(1 + х). Ответ: _________ 10. Решите систему уравнений { 3x−2y=5, 5x+6y=27. Ответ: _________ 11. За 3 ч езды на автомобиле и 4 ч езды на поезде туристы проехали 620 км, причем скорость поезда была на 10 км/ч больше скорости автомобиля. Каковы скорость поезда и скорость автомобиля? Обозначив через x км/ч скорость автомобиля и через у км/ч скорость поезда, составили системы уравнений. Какая из них составлена правильно? А. { 3x+4y=620, x−y=10 Б. { 3x+4y=620, y−x=10 В. { 4x+3y=620, x−y=10 Г. { 4x+3y=620, y−x=10 12. Какая из точек не принадлежит графику функции у = –0,6x + 1? А. (3; –0,8) Б. (–3; 0,8) B. (2; –0,2) Г. (–2; 2,2) 13. В какой координатной четверти нет ни одной точки графика функции у = –0,6x + 1,5? Ответ: _________ 14. Задайте формулой линейную функцию, график которой пересекает ось х в точке (2; 0) и ось у в точке (0; 7). Ответ: _________ Вариант 2 1. Найдите значение выражения x x−2 , если x = 2,25. Ответ: _________ 2. Товар стоил 1600 р. Сколько стал стоить товар после повышения цены на 5%? А. 1760 р. Б. 1700 р. В. 1605 р. Г. 1680 р. 3. За смену токари цеха обработали в среднем по 12,5 деталей. Петров обработал за эту смену 15 деталей. На сколько процентов его результат выше среднего? Ответ: ____________ 4. В ряду данных все числа целые. Какая из следующих характеристик не может выражаться дробным числом? А. Среднее арифметическое Б. Мода В. Медиана Г. Такой характеристики среди данных нет 5. Какое из уравнений не имеет корней? A. x =0 Б. x =7 В. x =−x Г. x =−6 6. На координатной прямой отмечены числа В и С (рис. 36). Сравните числа В и –С. А. В > –С Б. B

Числовые выражения составляются из чисел, знаков арифметических действий и скобок. Если в таком выражении присутствуют переменные, оно будет называться алгебраическим. Тригонометрическим является выражение, в котором переменная содержится под знаками тригонометрических функций. Задачи на определение значений числового, тригонометрического, алгебраического выражений часто встречаются в школьном курсе математики.

Инструкция

Чтобы найти значение числового выражения, определите порядок действий в заданном примере. Для удобства обозначьте его карандашом над соответствующими знаками. Выполните все указанные действия в определенном порядке: действия в скобках, возведение в степень, умножение, деление, сложение, вычитание. Полученное число и будет значением числового выражения.

Пример. Найдите значение выражения (34 10+(489–296) 8):4–410. Определите порядок действий. Первое действие выполните во внутренних скобках 489–296=193. Затем, умножьте 193 8=1544 и 34 10=340. Следующее действие: 340+1544=1884. Далее выполните деление 1884:4=461 и затем вычитание 461–410=60. Вы нашли значение данного выражения.

Чтобы найти значение тригонометрического выражения при известном угле?, предварительно . Для этого примените соответствующие тригонометрические формулы. Вычислите заданные значения тригонометрических функций, подставьте их в пример. Выполните действия.

Пример. Найдите значение выражения 2sin 30? cos 30? tg 30? ctg 30?. Упростите данное выражение. Для этого воспользуйтесь формулой tg ? ctg ?=1. Получите: 2sin 30? cos 30? 1=2sin 30? cos 30?. Известно, что sin 30?=1/2 и cos 30?=?3/2. Следовательно, 2sin 30? cos 30?=2 1/2 ?3/2=?3/2. Вы нашли значение данного выражения.

Значение алгебраического выражения зависит от значения переменной. Чтобы найти значение алгебраического выражения при заданных переменных, упростите выражение. Подставьте вместо переменных определенные значения. Выполните необходимые действия. В итоге вы получите число, которое и будет значением алгебраического выражения при заданных переменных.

Пример. Найдите значение выражения 7(a+y)–3(2a+3y) при a=21 и y=10. Упростите данное выражение, получите: a–2y. Подставьте соответствующие значения переменных и вычислите: a–2y=21–2 10=1. Это и есть значение выражения 7(a+y)–3(2a+3y) при a=21 и y=10.

Обратите внимание

Существуют алгебраические выражения, не имеющие смысла при некоторых значениях переменных. Например, выражение x/(7–a) не имеет смысла, если a=7, т.к. при этом знаменатель дроби обращается в нуль.

Задача, которая поссорила математиков и физиков. На чьей стороне ты? Чему равно 6:2(1+2)=? | Этому не учат в школе

Помните знаменитую задачу, которая в свое время разделила профессоров и учеников на два лагеря и поссорила физиков с математиками? Суть спора проста. Чему равно значение выражения 6:2(1+2)=?

Одни говорят, что ответ равен единице, другие — что ответ равен 9. А на чьей стороне ты?

Я не знаю, что подразумевал автор этой задачи, но у меня есть сомнения в том, что это какой-то реальный пример из учебника или ещё откуда-то. На мой взгляд эта задача специально придумана, чтобы показать то, чему обычно в математике не уделяют должного внимания. А именно тому, что в математике очень много вещей, которые формально записываются неправильно, но все понимают, о чем идет речь.

Вот хороший пример.

В первом случае мы понимаем, что у нас подразумевается сложение. А во втором случае при такой же записи, мы понимаем, что y≠2 и надо решать уравнение. То есть в зависимости от контекста мы читаем одну и ту же математическую запись абсолютно по-разному.

Или вот другой пример. Формально запись sin²x равна sin(sin(x)), а не sin(x²). Или вот ещё: запись sin2x мы воспринимаем исключительно как sin(2x), хотя формально следовало бы воспринимать её как sin2•x. Но ведь все всё понимают и двучтений не возникает.

Так как же воспринимать запись 6:2(1+2)? Во втором классе нас учили, что действия умножения и деления равносильны и выполняются по очереди слева направо. Нигде не говорится, что если опущен знак умножения, то он имеет преимущество перед делением. Хотя попытки узаконить преимущество умножения были ещё при Колмогорове в тридцатых годах. Но не прижилось это правило. Тем не менее в учебнике Виленкина, по которому сейчас учатся многие школьники, приведен вот такой пример: 14a²b²:a²b²=14b. Этот пример косвенно говорит нам о том, что если знак умножения в записи опущен, то у него преимущество. В противном случае, если бы мы все действия выполняли строго по очереди ответ был бы 14b⁴.

А теперь можно вспомнить физику. Запись 2mgh:2gh воспринимается как (2mgh):(2gh) и никак иначе. Впрочем, в физике обычно вместо двоеточия используют дробную черту, так что вопросов не возникает. Но если бы вдруг записали через двоеточие, никто бы тоже даже ухом не повел.

Теперь о том, что говорит ГОСТ для типографий. Умножение рекомендуется обозначать через точку (a•b) или через крестик (AxB). Допускается запись ab, но только в том случае, если все однозначно будут понимать, что это означает. Ещё раз подчеркну ключевое: «…если все однозначно будут понимать, что это означает«.

В нашем примере однозначного понимания нет. Для кого-то очевидно, что ответ будет равен единице, а для кого-то ясно как божий день, что верный ответ — девять. И однозначно разрешить этот спор нельзя. Просто запись некорректная. Тот, кто придумывал этот пример, или специально хотел всех запутать, или просто не в курсе правила «быть однозначно понятым».

Ну и несколько слов о том, почему вообще математика, которая по идее очень точная наука, допускает такие неточности в записях: в одном месте ставим знак умножить, в другом — нет, в одном месте квадрат ставим не там, где нужно, где-то не пишем скобочки и так далее. Да потому что математики, как и все остальные, довольно ленивые люди. Они пытаются укоротить и сократить запись.

Если бы мы писали основное тригонометрическое тождество по правилам, то запись выглядела бы так: (sin(x))²+(cos(x))²=1.

Это и писать гораздо дольше, чем sin²x+cos²x=1, и выглядит это устрашающе, да и шанс потерять какую-нибудь скобочку очень велик.

В общем, единственное, чему нас учит пример 6:2(1+2) — это быть понятным окружающим, чтобы твою запись могли однозначно интерпретировать. Именно поэтому, к слову, желательно избегать многоэтажных дробей.

Ну и как обычно напоминаю, что у меня есть Ютуб канал, а также каналы в Инстаграме и Тик-токе. Заходите, вспоминайте забытое и решайте интересные задачки, когда есть свободная минутка-две.

Ещё интересное: Задача, на которой посыпались все. Первое задание с Самарской математической олимпиады

Математическая капча на собеседовании, чтобы отсеять дураков

Задача для самых сообразительных: получи 8, используя 3, 6 и 9. Никто из учеников решить не смог

Математическая таблица. Формулы Действия с дробями. Б. математические теории

МАТЕМАТИЧЕСКИЕ ТАБЛИЦЫ МАТЕМАТИЧЕСКИЕ ТАБЛИЦЫ — одно из важнейших вспомогательных вычислительных средств, употребляются при различных расчетах. Математические таблицы представляют собой совокупность значений какой-либо функции для некоторых значений переменных. Напр., общеизвестные таблицы умножения дают значения функции y = x1x2, логарифмические таблицы — значения функции z = lg x; тригонометрические таблицы — значения функций z = sin x, z = cos x, z = tg x. Существуют и другие, значительно более сложные таблицы.

Большой Энциклопедический словарь . 2000 .

Смотреть что такое «МАТЕМАТИЧЕСКИЕ ТАБЛИЦЫ» в других словарях:

    Одно из важнейших вспомогательных вычислительных средств, употребляются при различных расчётах. Математические таблицы представляют собой совокупность значений какой либо функции для некоторых значений переменных. Например, общеизвестные таблицы… … Энциклопедический словарь

    Одно из важнейших вспомогат. вычислит, средств, употребляются при разл. расчётах. М. т. представляют собой совокупность значений к. л. функции для нек рых значений переменных. Напр., общеизвестные таблицы умножения дают значения функции y=x1x2,… … Естествознание. Энциклопедический словарь

    Сборник различных таблиц, которыми приходится пользоваться морякам при исчислении пути корабля и обработке астрономических наблюдений. Мореходные таблицы 1933 г. состоят из пяти разделов: 1. Общие математические таблицы. 2. Астрономические… … Морской словарь

    Одно из важнейших вспомогательных вычислительных средств. Обычно Т. м. представляют собой совокупность значений какой либо функции y = f (x1,…, xn) для некоторых значений переменных. Запоминаемая в детстве таблица умножения у =x1 – x2… …

    Математические тексты Древней Вавилонии и Ассирии; охватывают период с начала 2 го тыс. до н. э. и до начала н. э. (см. Вавилоно ассирийская культура). К. м. т. написаны Клинописью на глиняных пластинках. Среди К. м. т. имеются… … Большая советская энциклопедия

    Таблицы Логарифмов чисел; применяются для упрощения вычислений. Наиболее распространены таблицы десятичных логарифмов. Т. к. десятичные логарифмы чисел N и 10kN (при k целом) различаются только характеристиками и имеют одинаковые мантиссы … Большая советская энциклопедия

    Рис. 1. Графики логарифмических функций Логарифм числа b по основанию a определяется как показатель степени, в которую надо возвести число a, чтобы получить число b. Обозначение: . Из определения следует, что записи и ax = b равносильны. Пример … Википедия

    Табличный процессор категория программного обеспечения, предназначенного для работы с электронными таблицами. Изначально табличные редакторы позволяли обрабатывать исключительно двухмерные таблицы, прежде всего с числовыми данными, но затем… … Википедия

    Справочники, содержащие навигационные, астрономические, математические и другие справочные таблицы, с данными, необходимыми для выполнения расчетов при ведении счисления, определении места корабля различными способами и решения других… … Морской словарь

    МОРЕХОДНЫЕ ТАБЛИЦЫ — сборник различных таблиц, необходимых для решения навигационных и астрономических задач. М.Т. переиздаются примерно через 1O лет для внесения дополнений и изменений, признанных практикой мо реплавания за этот период. В сборник помещаются таблицы … Морской энциклопедический справочник

Книги

  • Четырехзначные математические таблицы , Л. М. Милн-Томсон, Л. Дж. Комри. Книга английских авторов Л. М. Милн-Томсона и Л. Дж. Комри «Четырехзначные математические таблицы» была впервые издана в Англии в 1931 г. и с тех пор, благодаря многократным переизданиям,…

На этой странице собраны все формулы, необходимые для сдачи контрольных и самостоятельных работ, экзаменов по по алгебре, геометрии, тригонометрии, стереометрии и другим разделам математики.

Здесь вы можете скачать или посмотреть онлайн все основные тригонометрические формулы, формулу площади круга, формулы сокращенного умножения, формула длины окружности, формулы приведения и многие другие.

Можно так же распечатать необходимые сборники математических формул.

Успехов в учебе!

Формулы Арифметики:

Формулы Алгебры:

Геометрические Формулы:

Арифметические формулы:

Законы действий над числами

Переместительный закон сложения: a + b = b + a.

Сочетательный закон сложения: (a + b) + с = a + (b + c).

Переместительный закон умножения: ab = ba.

Сочетательный закон умножения: (ab)с = a(bc).

Распределительный закон умножения относительно сложения: (a + b)с = aс + bс.

Распределительный закон умножения относительно вычитания: (a — b)с = aс — bс.

Некоторые математические обозначения и сокращения:

Признаки делимости

Признаки делимости на «2»

Число, делящееся на «2» без остатка называется чётным , не делящееся – нечётным . Число делится на «2» без остатка, если его последняя цифра чётная (2, 4, 6, 8) или ноль

Признаки делимости на «4»

Число делится на «4» без остатка, если две последние его цифры нули или в сумме образуют число, делящееся без остатка на «4»

Признаки делимости на «8»

Число делится на «8» без остатка, если три последние его цифры нули или в сумме образуют число, делящееся без остатка на «8» (пример: 1 000 — три последние цифры «00», а при делении 1 000 на 8 получается 125; 104 — две последние цифры «12» делятся на 4, а при делении 112 на 4 получается 28; и.т.д.)

Признаки делимости на «3» и на «9»

Без остатка на «3» делятся только те числа, у которых сумма цифр делится без остатка на «3»; на «9» — только те, у которых сумма цифр делится без остатка на «9»

Признаки делимости на «5»

Без остатка на «5» делятся числа, последняя цифра которых «0» или «5»

Признаки делимости на «25»

Без остатка на «25» делятся числа, две последние цифры которых нули или в сумме образуют число, делящееся без остатка на «25» (т.е. числа, оканчивающиеся на «00», «25», «50», «75»

Признаки делимости на «10», «100» и на «1 000»

Без остатка на «10» делятся только те числа, последняя цифра которых ноль, на «100» — только те числа, у которых две последние цифры нули, на «1000» — только те числа, у которых три последние цифры нули

Признаки делимости на «11»

Без остатка на «11» делятся только те числа, у которых сумма цифр, занимающих нечётные места, либо равна сумме цифр, занимающих чётные места, либо отличается от неё на число, делящееся на «11»

Абсолютная величина — формулы ( модуль)

|a| ? 0, причём |a| = 0 только если a = 0; |-a|=|a| |a2|=|a|2=a2 |ab|=|a|*|b| |a/b|=|a|/|b|, причём b ? 0; |a+b|?|a|+|b| |a-b|?|a|-|b|

Формулы Действия с дробями

Формула обращения конечной десятичной дроби в рациональную дробь:

Пропорции

Два равных отношения образуют пропорцию :

Основное свойство пропорции

Нахождение членов пропорции Пропорции , равносильные пропорции : Производная пропорция — следствие данной пропорции в виде

Средние величины

Среднее арифметическое

Двух величин: n величин:

Среднее геометрическое (среднее пропорциональное)

Двух величин: n величин:

Среднее квадратичное

Двух величин: n величин:

Среднее гармоническое

Двух величин: n величин:

Некоторые конечные числовые ряды

Свойства числовых неравенств

1) Если a , то при любом c : a + с .

2) Если a и c > 0 , то aс .

3) Если a и c , то aс > bс .

4) Если a , a и b одного знака, то 1/a > 1/b .

5) Если a и c , то a + с , a — d .

6) Если a , c , a > 0 , b > 0 , c > 0 , d > 0 , то ac .

7) Если a , a > 0 , b > 0 , то

8) Если , то

  • Формулы Прогрессии:

  • Производная
  • Логарифмы:
  • Координаты и векторы

    1. Расстояние между точками A1(x1;y1) и A2(x2;y2) находится по формуле:

    2. Координаты (x;y) середины отрезка с концами A1(x1;y1) и A2(x2;y2) находится по формулам:

    3. Уравнение прямой с угловым коэффициентом и начальной ординатой имеет вид:

    Угловой коэффициент k представляет собой значение тангенса угла, образуемого прямой с положительным направлением оси Ox, а начальная ордината q – значение ординаты точки пересечения прямой с осью Oy.

    4. Общее уравнение прямой имеет вид: ax + by + c = 0.

    5. Уравнения прямых, параллельных соответственно осям Oy и Ox, имеют вид:

    Ax + by + c = 0.

    6. Условия параллельности и перпендикулярности прямых y1=kx1+q1 и y2=kx2+q2 соответственно имеют вид:

    7. Уравнения окружностей с радиусом R и с центром соответственно в точках O(0;0) и C(xo;yo) имеют вид:

    8. Уравнение:

    представляет собой уравнение параболы с вершиной в точке, абсцисса которой

  • Прямоугольная декартова система координат в пространстве

    1. Расстояние между точками A1(x1;y1;z1) и A2(x2;y2;z2) находится по формуле:

    2. Координаты (x;y;z) середины отрезка с концами A1(x1;y1;z1) и A2(x2;y2;z2) находятся по формулам:

    3. Модуль вектора заданного своими координатами, находится по формуле:

    4. При сложении векторов их соответствующие координаты складываются, а при умножении вектора на число все его координаты умножаются на это число, т.е. справедливы формулы:

    5. Единичный вектор сонаправленный с вектором находится по формуле:

    6. Скалярным произведением векторов называется число:

    где — угол между векторами.

    7. Скалярное произведение векторов

    8. Косинус угла между векторами и находится по формуле:

    9. Необходимое и достаточное условие перпендикулярности векторов и имеет вид:

    10. Общее уравнение плоскости, перпендикулярной вектору имеет вид:

    Ax + by + cz + d = 0.

    11. Уравнение плоскости, перпендикулярной вектору и проходящей через точку (xo;yo;zo), имеет вид:

    A(x — xo) + b(y — yo) + c(z — zo) = 0.

    12. Уравнение сферы с центром O(0;0;0) записывается в виде.

На данной странице Вы можете посмотреть или бесплатно скачать самые востребованные математические формулы, таблицы ,а также справочные материалы по высшей математике. Все математические таблицы составлены лично мной и снабжены дополнительными комментариями. Сделано это в целях преодоления трудностей, с которыми часто сталкиваются студенты-заочники в ходе решения задач. Я не претендую на всеобъемлющую полноту материалов, но то, что ОЧЕНЬ ЧАСТО встречается, Вы найдете.

Рассмотрим, например, таблицу тригонометрических формул. Тригонометрических формул достаточно много, они давно известны, и нет никакого смысла переписывать справочники. А вот те формулы, которые очень часто используются для решения задач курса высшей математики, собраны воедино, и могут быть очень полезны при выполнении практических заданий. При этом в комментариях я указываю, в каком разделе высшей математики (пределы, производные, интегралы, и т.д.) практически всегда фигурирует та или иная формула.

Итак, прямо сейчас у Вас есть бесплатный доступ к ценным справочным материалам, возможен, как онлайн просмотр, так и скачивание. Удобнее всего сразу распечатать математические таблицы и справочные материалы, которые Вас заинтересуют. Как показывает практика, информация на экране монитора усваивается хуже, чем на бумаге, да и читать с монитора труднее.

Почти все файлы размещены прямо на сайте, а значит, могут быть получены в максимально короткий срок, ограниченный только скоростью Вашего Интернет-подключения.

! В случае некорректного отображения pdf используйте следующие рекомендации

Рекомендую просмотреть всем. Данные формулы встречаются в ходе решения задач по высшей математике буквально на каждом шагу. Без знания этих формул – никуда. С чего начать изучение высшей математики? С повторения этого. Независимо от уровня Вашей математической подготовки на данный момент, крайне желательно СРАЗУ ВИДЕТЬ возможность выполнения элементарных действий, применения простейших формул в ходе решения пределов, интегралов, дифференциальных уравнений и т.д.

В справочнике есть краткая информация о модуле, формулы сокращенного умножения, алгоритм решения квадратного уравнения, правила упрощения многоэтажных дробей, а также важнейшие свойства степеней и логарифмов.

Приведены самые «ходовые» тригонометрические формулы, которые применяются в ходе решения задач по высшей математике. На самом деле таких формул НЕМНОГО, и, собирать десятки других по различным математическим справочникам – пустая трата времени. Всё (или почти всё), что может потребоваться – здесь.

При выполнении заданий по математике нередко возникает необходимость заглянуть в тригонометрические таблицы. В данном справочном материале представлена таблица значений тригонометрических функций (синуса, косинуса, тангенса и котангенса) при значениях аргумента от нуля до 360 градусов. Держать в памяти данную информацию нет никакого смысла, но некоторые значения тригонометрических функций хорошо бы знать . Также представлены формулы приведения для вышеуказанных тригонометрических функций, иногда (чаще всего при решении пределов) требуются. По просьбам посетителей сайта в pdf-файл добавлена таблица значений обратных тригонометрических функций и две формулы: формула перевода градусов в радианы, формула перевода радианов в градусы.

Методический материал представляет собой обзор графиков основных элементарных функций и их свойств. Будет полезен при изучении практически всех разделов высшей математики, более того, справочное пособие поможет вам намного лучше и качественнее разобраться в некоторых темах. Также вы сможете узнать, какие значения функций следует знать наизусть , чтобы не получить «два автоматом» при ответе на простейший вопрос экзаменатора. Справка выполнена в форме веб страницы и содержит много графиков функций, которые также желательно помнить. По мере развития проекта методичка стала играть роль вводного урока по теме «Функции и графики».

На практике у студентов-заочников практически всегда возникает необходимость использовать первый и второй замечательные пределы, о которых и идет речь в данной справке. Также рассмотрены еще три замечательных предела, которые встречаются значительно реже. Все замечательные пределы снабжены дополнительными важными комментариями. Кроме того, файл дополнен информацией о замечательных эквивалентностях.

В справке приведены правила дифференцирования и таблица производных от основных элементарных функций. Таблица снабжена очень важными примечаниями.

Ваш гид по разделу «Функции и графики». В pdf-ке систематизирована и законспектирована информация об основных этапах исследования функции одной переменной. Руководство сопровождается ссылками, а значит, экономит массу времени. Мануал полезен как чайнику, так и подготовленному читателю.

В общем-то, почти то же самое, что в дифференциальном исчислении. Правила интегрирования и таблица интегралов с моими комментариями.

Справочный материал незаменим при изучении степенных рядов. В таблице представлены разложения в степенной ряд следующих функций: экспоненты, синуса, косинуса, логарифма, арктангенса и арксинуса. Также приведено биномиальное разложение и наиболее распространенные частные случаи биномиального разложения. Разложение функции в ряд является самостоятельным заданием, используется для приближенных вычислений, приближенных вычислений определенного интеграла и в некоторых других задачах.

Основной трудностью при решении неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами является правильный подбор частного решения по виду правой части. Данная методичка, относится, прежде всего, к уроку Как решить неоднородное уравнение второго порядка? и поможет вам легко разобраться в подборе частного решения. Справка не претендует на основательную научную полноту, она написана простым и понятным языком, однако в 99,99% случаев в ней найдется именно тот случай, который вы ищете.

Справка незаменима в ходе решения прикладных задач комплексного анализа – нахождения частного решения ДУ операционным методом и нахождения частного решения системы ДУ этим же способом. Таблица отличается от аналогов тем, что «заточена» именно под вышеуказанные задания, данная особенность позволяет легко освоить алгоритмы решения. Приведено как прямое, так и обратное преобразование Лапласа для наиболее распространенных функций. В случае если информации окажется недостаточно, рекомендую обратиться к солидному математическому справочнику – полная версия содержит более сотни пунктов.

В справочном материале приведены формулы факториала, количества перестановок, сочетаний, размещений (с повторениями и без повторений), а также содержательные комментарии к каждой формуле, позволяющие понять их суть. + Правила сложения и умножения комбинаций. Кроме того, в pdf-ке есть краткая информация о биноме Ньютона и треугольнике Паскаля с примерами их практического использования.

Файл содержит перечень формул с краткими комментариями по обеим главам тервера – Случайные события и Случайные величины , в том числе приведены формулы и числовые характеристики распространённых дискретных и непрерывных распределений. Справка систематизирует материал и очень удобна для выполнения практических заданий, заглядываем и сразу находим то, что нужно!

Специальные расчётные программы:

В данном разделе вы можете найти вспомогательные программы для решения широких и узколокальных математических задач. Они помогут вам быстро выполнить расчёты и оформить решение.

Универсальный калькулятор реализован в рабочей книге MS Excel, которая содержит три листа. Программа может заменить обычный калькулятор с множеством функций. Любые степени, корни, логарифмы, тригонометрические функции, арки – без проблем! Кроме того, калькулятор в автоматическом режиме выполняет основные действия с матрицами , считает определители (до определителя 5 на 5 включительно), мгновенно находит миноры и алгебраические дополнения матриц. За считанные секунды можно решить систему линейных уравнений с помощью обратной матрицы и по формулам Крамера , посмотреть основные этапы решения. Всё это очень удобно для самопроверки. Просто введите свои числа и получите готовый результат!

Данная полуавтоматическая программа относится к уроку Формула трапеций, формула Симпсона и помогает рассчитать приближенное значение определенного интеграла на 2, 4, 8, 10 и 20 отрезках разбиения. Прилагается видеоурок по работе с калькулятором. Вычислите ваш определенный интеграл в считанные минуты, и даже секунды!

На данный момент пока всё.

Раздел постепенно пополняется дополнительными материалами и полезными программами. Каждое справочное пособие неоднократно редактировалось и улучшалось, в том числе, с учетом ваших пожеланий и замечаний! Если Вы считаете, что упущено что-то важное, нашли какие-либо неточности, а может быть что-то разъяснено недостаточно понятно, обязательно пишите !

С уважением, Емелин Александр

одно из важнейших вспомогательных вычислительных средств. Обычно Т. м. представляют собой совокупность значений какой-либо функции y = f (x 1 ,…, x n ) для некоторых значений переменных. Запоминаемая в детстве таблица умножения у =x 1 – x 2 (где x 1 , x 2 = 1, 2,…, 9), таблицы тригонометрических функций, таблицы логарифмов — примеры математических таблиц. Т. м. употребляются всюду, где приходится иметь дело с расчётами: в математике, физике, химии, астрономии, технике, экономике и т. д.

Для непрерывно меняющихся переменных x 1 ,…, x n функции y = f (x 1 ,…, x n) в таблицу включаются значения (ответы) y 1 ,…, y n лишь при некоторых значениях (x 1 ,…, x n) 1 , …, (x 1 ,…, x n) n , для нахождения f (x 1 ,…, x n) в случае, если (x 1 , …, x n) не включено в таблицу, необходимо проводить интерполяцию (См. Интерполяция). Каждая Т. м. характеризуется степенью точности (числом верных знаков или значащих цифр в табличных ответах), диапазоном изменения аргументов, шагом (разностью между соседними табличными значениями аргументов).

При создании таблицы (табулировании) функции у = f (x 1 ,…, x n) решаются два основных вопроса: а) конструкция таблицы, то есть выбор диапазона переменных x 1 ,…, x n , выбор тех значений переменных, для которых приводятся ответы, размещение материала, вопрос о пользовании готовыми таблицами и т. д.; б) вычисление значений f (x 1 ,…, x n).

Задача б) не является специально табличной; специфика состоит в необходимости тщательной проверки большого цифрового материала (как при вычислении, так и при типографских корректурах).

При конструировании таблицы решается задача размещения на приемлемом объёме необходимого числа ответов у 1 ,…, y n так, чтобы значение функции f (x 1 ,…, x n) для значений (x 1 ,…, x n) (возможно и не попавших в число табличных) можно было определить наиболее лёгким способом. Диапазон изменения переменных определяется как из практических потребностей, так и из того, сколь легко вне его можно вычислить функцию с принятой в таблице точностью. Шаг по переменным выбирается таким, чтобы интерполяция приемлемого порядка давала нужное число верных знаков. В таблицах массового применения допускается обычно только линейная интерполяция, в таблицах, имеющих более узкое назначение, — квадратичная (более высокий порядок нежелателен и встречается реже). Необходимые при этом вспомогательные величины (разности функций и пр.) обычно включаются в таблицу. Важным приёмом, дающим возможность получить более гладкую функцию и тем самым упростить конструкцию таблицы (уменьшить число ответов, упростить интерполяцию и пр.), является замена аргументов и замена исходной функции на другую, связанную с ней простым соотношением.

Т. м. появились уже в раннем периоде развития математики. Так, в Вавилоне ещё за 2000 лет до н. э. были широко распространены таблицы произведений натуральных чисел, таблицы чисел вида 1/n , n 2 , n 3 , n 2 + n 3 и др. Эти таблицы применялись для различных вычислений и позволяли вавилонским математикам решать довольно сложные вычислит. задачи.

Первые таблицы трансцендентных функций появились в Древней Греции в связи с развитием астрономии и накоплением ею обширного материала наблюдений, требовавшего математической обработки. В сочинении греческого астронома Птолемея (2 в.) «Альмагест» содержатся первые из дошедших до нас тригонометрические таблицы. В таблицах Птолемея даны значения длин хорд, соответствующих дугам от 0 до 180° через каждые 30″ (длина хорды выражена в долях радиуса по шестидесятеричной системе). Для целей интерполяции в таблицах помещены разности. Т. м. (в частности, таблицы тригонометрических функций) составлялись индийскими математиками и математиками Ближнего Востока и Средней Азии (5-11 вв.). Так, Абу-ль-Вефа (10 в.) составил таблицы синусов, вычисленных через 10″ с точностью 1:60 4 , а также таблицы тангенсов.

Начало больших работ по составлению таблиц в Европе относится к 15 в. Развитие естествознания в эпоху Возрождения побудило европейских математиков и астрономов к созданию в 15-17 вв. всё более полных и точных таблиц тригонометрических функций. Региомонтан (15 в.) в своих таблицах первым стал употреблять десятичную систему счисления. Его таблицы дают значения синусов через минуту, точность — 7 знаков. Составлением тригонометрических таблиц занимался Н. Коперник. Первая книга его труда «Revolutiones orbium caelestium» (1543) содержит пятизначные таблицы синусов. Ученик Коперника Ретик начал вычисление фундаментальных таблиц тригонометрических функций с 15 знаками через 10 «, а для первого и последнего градуса квадранта через каждую секунду. Расширенные и дополненные в 1613 немецким учёным Б. Питиском, эти таблицы послужили основой современных тригонометрических таблиц. Таблицы логарифмов чисел впервые были опубликованы в 1614 Дж. Непером, в 1620 близкие таблицы издал швейцарский математик И. Бюрги. Первые таблицы десятичных логарифмов были опубликованы английским математиком Г. Бригсом в 1617 для чисел от 1 до 1000 с 8 знаками и в 1624 для чисел от 1 до 20 000 и от 90 000 до 100 000 с 14 знаками. Вслед за таблицами логарифмов чисел появились таблицы логарифмов тригонометрических функций. Голландский математик А. Влакк в 1633 даёт десятизначные таблицы lgsinx и lgtgx с шагом в 10 » и с разностями. Бригс в 1633 даёт натуральные синусы с 15 знаками, тангенсы и секансы с 10 знаками, lgsinx с 14 знаками, lgtgx с 10 знаками и шагом 0,01° от 0 до 45°.

С развитием науки, торговли и мореплавания быстро возрастает число выпускаемых таблиц. 18 в. дал значительно больше Т. м., чем 17 в. В 19 в. не только увеличилось количество выпускаемых Т. м., но и значительно расширился охватываемый ими класс функций. В приложениях математики важную роль стали играть так называемые Специальные функции, появились таблицы эллиптических функций, гиперболических функций, гамма-функций, цилиндрических функций и др. В вычислении таблиц принимали участие крупнейшие математики: Л. Эйлер, А. Лежандр, К. Гаусс и др.

В 20 в. вычислено и издано в несколько раз больше Т. м., чем за весь предшествующий период, в основном различных специальных функций, некоторые из них вычислены с весьма большой точностью (15-30 знаков). Выпуск таблиц тесно связан с развитием вычислительной техники. Фоторазмножение Т. м., выдаваемых ЭВМ, практически исключает ошибки. Большие работы по выпуску таблиц ведутся в СССР. Наряду с отдельными изданиями выпускаются серии таблиц Математическим институтом АН СССР, институтом точной механики и вычислит, техники АН СССР и Вычислительным центром АН СССР. С увеличением количества выпускаемых таблиц эффективное их использование и планирование дальнейшей работы в этой области требуют систематизации табличного материала и подробного описания имеющихся таблиц.

  • — в демографии, служат для количеств. и качеств, анализа демографич. процессов, используются при расчёте разл. демографич. показателей…

    Демографический энциклопедический словарь

  • — условные обозначения, предназначенные для записи математич…

    Математическая энциклопедия

  • — усл. обозначения, служащие для записи матем. понятий, предложений и выкладок…

    Естествознание. Энциклопедический словарь

  • — условные обозначения, служащие для записи математических понятий, предложений и вычислений…

    Начала современного Естествознания

  • — т. е. знаки и сокращения, употребляющиеся в математике. А. Знаки действий: 1) сложения знак называется плюс, 2) вычитание знак его минус; 3) умножения — знак или…
  • — см. Ученые общества…

    Энциклопедический словарь Брокгауза и Евфрона

  • — условные обозначения, предназначенные для записи математических понятий, предложений и выкладок…
  • — Специальные М. ж., являющиеся органами различных научных учреждений, обществ и объединений, возникли в начале 19 века. В 70-е годы 20 века во всём мире насчитывается более 250 М. ж. Значительно возросший…

    Большая Советская энциклопедия

  • — научный журнал Отделения математики АН СССР, публикующий краткие оригинальные работы по всем разделам современной математики, а также информационные материалы. Издаётся в Москве с 1967…

    Большая Советская энциклопедия

  • Большая Советская энциклопедия

  • — научные учреждения, ведущие исследовательскую работу в области математики и её приложений. В СССР почти все М. и. входят в состав АН СССР или АН союзных республик…

    Большая Советская энциклопедия

  • — международные созываются 1 раз в 4 года. Первый М. к. состоялся в Цюрихе в 1898. После 2-й мировой войны 1939-45 М. к. состоялись в Кембридже, Амстердаме, Эдинбурге, Стокгольме, Москве, Ницце…

    Большая Советская энциклопедия

  • — одно из важнейших вспомогательных вычислительных средств. Обычно Т. м. представляют собой совокупность значений какой-либо функции y = f для некоторых значений переменных…

    Большая Советская энциклопедия

  • Современная энциклопедия

  • — условные обозначения, служащие для записи математических понятий, предложений и выкладок…
  • — см. Знаки математические…

    Большой энциклопедический словарь

«Таблицы математические» в книгах

Математические науки

Из книги Повседневная жизнь Флоренции во времена Данте автора Антонетти Пьер

Математические науки Собственный вклад флорентийцев в средневековую теоретическую математику был незначительным и относился уже к эпохе более поздней, нежели эпоха Данте. Так, Паоло Дагомари (1281–1365) опубликовал «Трактат об абаке» (отсюда его прозвище: Паоло-Абако).

Значения полей параметров (столбцов) Таблицы текущих значений, Таблицы истории, Таблицы изменений параметров программы QUIK

Из книги Самоучитель биржевой торговли автора Сипягин Евгений

Значения полей параметров (столбцов) Таблицы текущих значений, Таблицы истории, Таблицы изменений параметров программы QUIK Таблица 28. Значения полей параметров (столбцов) Таблицы текущих значений, Таблицы истории, Таблицы изменений

Б. МАТЕМАТИЧЕСКИЕ ТЕОРИИ

Из книги Загадки египетских пирамид автора Лауэр Жан-Филипп

Б. МАТЕМАТИЧЕСКИЕ ТЕОРИИ Источником возникновения некоторых математических теорий послужил, вероятнее всего, труд Жомара «Изложение системы мер древних египтян»225. Мы не будем возвращаться к основным астрономическим цифровым соотношениям, которые он стремится извлечь

Приложение Пасхальные таблицы и таблицы дат первых весенних астрономических полнолуний, вычисленных по формулам Гаусса (Г.В. Носовский)

Из книги Пасха [Календарно-астрономическое расследование хронологии. Гильдебранд и Кресцентий. Готская война] автора Носовский Глеб Владимирович

Приложение Пасхальные таблицы и таблицы дат первых весенних астрономических полнолуний, вычисленных по формулам Гаусса (Г.В. Носовский) Звездочкой (*) в последнем столбце отмечены годы, когда определенная пасхалией календарная православная Пасха праздновалась бы раньше

Знаки математические

Из книги Большая Советская Энциклопедия (ЗН) автора БСЭ

БСЭ

Математические конгрессы

Из книги Большая Советская Энциклопедия (МА) автора БСЭ

Математические общества

Из книги Большая Советская Энциклопедия (МА) автора БСЭ

Математические формулы

Из книги Как спроектировать современный сайт автора Вин Чои

Математические формулы Кирпичи просто создавать, использовать, они понятны и просты, но на протяжении столетий возникло и сформировалось более тонкое понимание систем упорядочения. Эти открытия и нововведения развивали наше понимание сеток. Обращаясь к математике,

Математические функции

Из книги Windows Script Host для Windows 2000/XP автора Попов Андрей Владимирович

Математические функции Имеющиеся в VBScript функции, предназначенные для математических вычислений, описаны в табл. П2.14.Таблица П2.14. Математические функции Функция Описание Abs(x) Возвращает абсолютное значение числа х Atn(x) Возвращает арктангенс числа х Cos(x) Возвращает

Калькулятор дробей


Калькулятор выполняет базовые и расширенные операции с дробями, выражениями с дробями, объединенными с целыми числами, десятичными знаками и смешанными числами. Он также показывает подробную пошаговую информацию о процедуре расчета дроби. Решайте задачи с двумя, тремя или более дробями и числами в одном выражении.

Правила для выражений с дробями:
Дроби — просто используйте косую черту между числителем и знаменателем, т.е.е., для пяти сотых введите 5/100 . Если вы используете смешанные числа, не забудьте оставить один пробел между целой и дробной частью.
Косая черта разделяет числитель (число над дробной чертой) и знаменатель (число ниже).

Смешанные числа (смешанные дроби или смешанные числа) записываются как целое число, разделенное одним пробелом и дробью, то есть 1 2/3 (с тем же знаком). Пример отрицательной смешанной дроби: -5 1/2 .
Поскольку косая черта является одновременно знаком для дробной линии и деления, мы рекомендуем использовать двоеточие (:) в качестве оператора деления дробей i.е., 1/2: 3 .

Десятичные числа (десятичные числа) вводятся с десятичной точкой . , и они автоматически конвертируются в дроби — то есть 1,45 .

Двоеточие : и косая черта / являются символом деления. Может использоваться для деления смешанных чисел 1 2/3: 4 3/8 или может использоваться для записи сложных дробей, например, 1/2: 1/3 .
Звездочка * или × — это символ умножения.1/2
• сложение дробей и смешанных чисел: 8/5 + 6 2/7
• деление целого и дробного числа: 5 ÷ 1/2
• комплексные дроби: 5/8: 2 2/3
• десятичное дробное: 0,625
• Дробь в десятичную: 1/4
• Дробь в проценты: 1/8%
• сравнение дробей: 1/4 2/3
• умножение дроби на целое число: 6 * 3/4 ​​
• квадратный корень дроби: sqrt (1/16)
• уменьшение или упрощение дроби (упрощение) — деление числителя и знаменателя дроби на одно и то же ненулевое число — эквивалентная дробь: 4/22
• выражение в скобках: 1 / 3 * (1/2 — 3 3/8)
• сложная дробь: 3/4 от 5/7
• кратная дробь: 2/3 от 3/5
• разделите, чтобы найти частное: 3/5 ÷ 2 / 3

Калькулятор следует известным правилам для порядка операций .Наиболее распространенные мнемоники для запоминания этого порядка операций:
PEMDAS — круглые скобки, экспоненты, умножение, деление, сложение, вычитание.
BEDMAS — Скобки, экспоненты, деление, умножение, сложение, вычитание
BODMAS — Скобки, порядок или, деление, умножение, сложение, вычитание.
GEMDAS — Группирующие символы — скобки () {}, экспоненты, умножение, деление, сложение, вычитание.
Будьте осторожны, всегда выполняйте умножение и деление перед сложением и вычитанием .Некоторые операторы (+ и -) и (* и /) имеют одинаковый приоритет и должны вычисляться слева направо.

Дроби в задачах со словами:

  • Кто-то
    Кто-то съел 1/10 торта, осталось только 9/10. Если вы съедите 2/3 оставшегося торта, сколько всего торта вы съедите?
  • Пекарь
    Пекарь продает в магазине 5 пирогов 1/4. Она разрезала пироги на кусочки, каждая из которых составляла 1/8 целого пирога. Сколько у нее кусочков пирога?
  • Торты
    1/3 макового коржа, 1/3 яблока, 15 кусочков сыра.Сколько всего тортов?
  • Каменщики
    8 каменщиков строят дом за 630 дней. Сколько каменщиков нужно добавить через 150 дней, чтобы построить все здание за (следующие) 320 дней?
  • Добавление смешанных 4
    2 и 1/8 плюс 1 и 1/3 =
  • Неизвестное число 23
    Найдите 2/3 неизвестного числа, что составляет две трети 99.
  • Портной
    Портной купил 2 3 / 4 метра текстиля и заплатили 638 крон. Определите цену за 1 м ткани.
  • Печенье
    Мама печет печенье.Роло взял 2/9 всего печенья, Михал — 3/9. Сколько печенья съел Роло, если у Михала было 9.
  • Дуг проехал на велосипеде
    Дуг проехал 5 1/4 мили за 3/4 часа. Какая у него средняя скорость?
  • Из 2
    От веревки длиной 11 м отрезают два отрезка длиной 13/5 м и 33/10 м. Какова длина оставшейся веревки?
  • Ученица
    Я учусь в начальной школе. Я ходил на родительские упражнения с детьми 1/4 моего возраста, 1/3 по рисованию и 1/6 по флейте. Первые три года жизни у меня не было кольца, и я никогда не ходил на два кольца одновременно.Сколько мне лет?
  • Фракции пиццы
    Энн съела треть пиццы, а затем еще одну четверть. Общая часть пиццы, которую съела Энн, и сколько пиццы осталось?
  • Sugar 8
    Heather имеет 2 стакана сахарной пудры. Она высыпает 3/5 сахара на тарелку с пирожными, а остальное высыпает на тарелку с лимонным печеньем. Сколько сахара Хизер посыпает пирожные? Сколько сахара посыпает Хизер лимонный котелок

следующие математические задачи »

Калькулятор буквальных уравнений

Наших пользователей:

Полные объяснения, практический подход, низкая цена и хорошие задания делают его моим лучшим профессиональным репетитором.
Блейн Милхэм, MH

Хорошо, вот что мне нравится: гораздо более удобный интерфейс, охват функций, триггеры. лучше графики, мастера. Тем не менее, по-прежнему нет проблем со словами, pre-calc, calc. (Пожалуйста, скажите мне, что вы работаете над этим — кто будет делать мою домашнюю работу, когда я закончу колледж алгебры?!?
Bim Oyadare, FL

То, как работает этот инструмент, и его пошаговый подход к сложным уравнениям делает обучение приятным.Отличная работа!
Маргарет Томас, Нью-Йорк


Студенты, решающие всевозможные алгебры, узнают, что наше программное обеспечение спасает жизнь. Вот поисковые фразы, которые использовали сегодняшние поисковики, чтобы найти наш сайт. Можете ли вы найти среди них свою?


Поисковые фразы, использованные на 17.01.2010:
  • год 11 математических трехчленов бесплатные рабочие листы
  • общих вопросов о способностях английского языка
  • математических сумм на практику
  • elementary mathworksheets: упрощение алгебраических выражений, включая похожие термины
  • задачи свободной симметрии для 3-го 4-го класса
  • бесплатных листа на координатной плоскости
  • решать умножение и деление рациональных выражений
  • Рабочие листы с задачами по переменному рассказу по алгебре для 5-го класса
  • пример математических мелочей
  • решение системы двух уравнений excel
  • решение задач с математическим коэффициентом масштабирования
  • СПЕКТРОСКОПИЧЕСКАЯ нотация записывает полную электронную конфигурацию иона меди (I)
  • matlab нелинейные дифференциальные уравнения
  • Калькулятор линейных уравнений с двумя переменными
  • графический калькулятор эллипс
  • квадратное уравнение с дробными показателями
  • бесплатный онлайн калькулятор ti 83
  • лист заказа на проценты
  • тест по алгебре онлайн
  • решение линейных уравнений с помощью калькулятора абсолютных величин
  • Калькулятор упрощающих радикальных выражений
  • онлайн-листы системы линейных уравнений
  • программное обеспечение алгебры 2
  • простое следственное задание 6 разряда
  • инвестиционный по математике
  • как загрузить на TI-84 plus
  • Число строк от наименьшей к наибольшей
  • что такое 2/3 как десятичная дробь
  • задачи на дробь третьего класса
  • Программа расчета стандартных обозначений
  • заданий по алгебре для 5 класса
  • одновременное уравнение + ТИ 92
  • PowerPoint презентации преобразования Lapace и их математические задачи
  • решать многочлены: упростить, используя положительные показатели
  • алгебратора + словесная задача
  • как разделить
  • математика развития биттингера 6-е издание ключ ответа
  • квадратный корень — это показатель степени
  • как найти наклон с помощью ti 83
  • математика исследовательская геометрия
  • найти корень excel
  • стихотворения по тригонометрии
  • степень умножения
  • саксонская математика 3-й класс ответы
  • как решить умножение целых чисел
  • общий знаменатель трехчленное выражение
  • mcdougal littell math course 3 ответы
  • несовершенный квадратный корень
  • линейные функции + КС-3 + рабочие листы
  • Год для печати 10 практических заданий
  • перестановки и комбинации glencoe calfornia
  • решить ti 89
  • бесплатных рабочих листа по целым числам
  • Таблицы преобразования дробей в более высокие числа
  • Тест по математике в 7 классе
  • неоднородные комплексные числа дифференцирования второго порядка
  • разности двух квадратов целых чисел
  • Уравнение дробного десятичного преобразования
  • г. 11 по математике
  • как решать логарифмы
  • программа для решения задач алгебры
  • Базовые курсы ged algebre
  • решатель экспоненциальных выражений
  • рабочие листы для построения графиков линейных равенств
  • математические ответы для LCM
  • программа для решения парных уравнений
  • квадратный корень с показателями
  • бесплатная онлайн-таблица МАСШТАБНЫЙ ФАКТОР для 7-го класса
  • бесплатные задания по алгебре для 6-го класса
  • калькулятор для решения полиномиальных неравенств ti83
  • упрощение сложных выражений
  • Учебное пособие по предалгебре, учебный зал
  • Калькулятор деления многочленов на двучлены
  • уравнение с участием производных радикалов и первообразных с решением
  • веселые задания по алгебре
  • онлайн-калькулятор дифференциального уравнения
  • Математика в средней школе с Pizzazz! Книга D
  • Как рассчитать значение хи на калькуляторе T183
  • переписывание дифференциального уравнения второго порядка
  • рубрика, используемая для сложения целых чисел в алгебре
  • решение линейных уравнений с твердыми дробями
  • квадратные задачи о словах дроби
  • алгебра отрицательных квадратных корней
  • асимптоты полиномов Ti-калькулятор
  • mcdougal littell algebra 2 бесплатные ответы
  • однородный математический
  • решение системных уравнений бесплатная программа
  • линейные равенства
  • перемножение радикальных уравнений
  • вопрос о способностях
  • рабочие листы кумон по математике для 1 класса
  • Решите квадратное уравнение с автоматическим разложением на множители
  • программа решения квадратных уравнений

Калькулятор многоступенчатых уравнений

Как решить основные линейные уравнения?

Во-первых, взгляните на этот пример:

Во-первых, упростите с обеих сторон.Слева вы можете добавить и. Тогда вы получите уравнение:

Затем вы должны переставить уравнение таким образом, чтобы x находился слева, а числа — справа. Поскольку нам не нравится x в правой части, мы вычитаем x с обеих сторон. слева.

Теперь нам нужно получить число на другой стороне. Так что прибавляем по обеим сторонам. Так как мы получаем

Теперь разделим обе стороны на число перед x:

Уравнение решено; это решение.

Вы всегда можете действовать точно так же: во-первых, максимально упростите обе части уравнения. Затем упростите с помощью преобразований эквивалентности. Вычтите число с умом с обеих сторон. Наконец, на одной стороне должно быть несколько переменных, а на другой — число. Вы делите на число перед переменной, и уравнение решается.

Как Mathepower показывает решения?

Когда вы ввели уравнение, вы получите следующее:


Набор решений: {}

А если я хочу решить другое уравнение?

Вы используете mathepower.com. Введите свое уравнение выше, и оно будет решено с помощью той же процедуры. Прямо сейчас и бесплатно (mathepower финансируется за счет рекламы).

Какие особые случаи необходимо учитывать при решении уравнений?

Наиболее важными частными случаями являются уравнения с бесконечным числом решений или без решений.

Во-первых, пример уравнения с бесконечным числом решений:


Вы видите, что у вас одинаковые числа с обеих сторон. Очевидно, что это верное утверждение для любого значения x (в этом уравнении больше нет x).Таким образом, мы видим, что уравнение может иметь бесконечное число решений.

Что означает, когда уравнение имеет бесконечное количество решений? Вы можете попробовать это: возьмите любое значение для x (например, обе стороны будут одинаковыми. Он работает с любым значением для x. Причина в том, что термины на обеих сторонах эквивалентны, т.е. термины с одинаковым решением с любым значение для x.

Другой частный случай — уравнение без решения:


Мы видим, что после перестановки в уравнении нет x и что уравнение явно неверно.Это связано с тем, что исходное уравнение не имеет решения.

Calculated Industries 4065 Construction Master Pro Advanced Construction Math Калькулятор доли футов в дюймах для подрядчиков, оценщиков, строителей, строителей, ремонтников, ремонтников и плотников —

Construction Master pro (модель 4065) от Calculated Industries устанавливает отраслевой стандарт для продвинутых строительно-математические калькуляторы. Предлагая мощные встроенные решения и расширенные настройки предпочтений, он идеально подходит для заполнения макетов, ставок и оценок, а также помогает сэкономить время и деньги, помогая вам определить нужное количество необходимых материалов.Он идеально подходит для подрядчиков, оценщиков, архитекторов, строителей, строителей, инженеров, подрядчиков по бетону / фундаменту, чертежников и т. Д.

Идеально подходит для заполнения макетов, ставок и оценок (увеличить).
Быстрые, точные решения в полевых условиях

Вы сможете работать и конвертировать между всеми размерными форматами зданий — ярдами, долями в фут-дюймах и метрическими — включая площадь и объем. Construction Master Pro включает ряд встроенных функций, позволяющих сэкономить время, в том числе расчет подступенков, ступеней, длины стрингера и угла наклона; сколько листов 4 на 8, 4 на 9 или 4 на 12 нужно для покрытия площади; домкратные стропильные конструкции для кровли с обычным и неправильным скатом; определение количества центральных шпилек для введенной длины; и прямые углы.Он также предлагает передовые решения для кругов, арок, колонн, конусов, столбов, окон и дуг, окружностей и сегментов с отверстиями.

Handheld Convenience

Construction Master Pro также включает в себя возможность настраивать свои предпочтения (например, дробные настройки), «безбумажную» ленту, которая позволяет вам просматривать предыдущие 20 записей, чтобы дважды проверить ваши итоги, и накапливать память с помощью три дополнительных места для хранения в памяти. Он питается от двух 1,5-вольтовых батарей (LR-44 / A76), а Construction Master Pro имеет функцию автоматического отключения, которая выключает калькулятор примерно через 8–12 минут простоя.Размер 11-разрядного дисплея составляет 2,5 на 0,625 дюйма. В целом, калькулятор имеет размеры 5,6 дюйма на 3 дюйма на 0,6 дюйма и вес 4,5 унции. На него предоставляется ограниченная гарантия сроком на один год.

Комплектация

Калькулятор One Calculated Industries 4065 Construction master pro, защитный чехол Armadillo Gear, карманное справочное руководство на английском и испанском языках и батарейки.

Интернет-научный калькулятор — инструмент

Скачать научный калькулятор eCalc

Версия для Windows Версия для Mac OSX Просмотреть больше загрузок

Онлайн-калькулятор и математическая справка

Поддержка кнопок и клавиш

Стек

Поддон Intro

Основные функции

Дополнение

Вычитание

Умножение

Дивизия

Знак

Площадь

Квадратный корень

Подъем к власти

Естественная экспонента

Логарифм

Натуральный логарифм

Обратный

Показатель

Факториал

PI

Тригонометрические функции онлайн

Синус

Обратный синус

Косинус

Обратный косинус

Касательная

Обратный тангенс

Косеканс

Обратный косеканс

Секант

Обратный секанс

Котангенс

Обратный котангенс

Онлайн-гиперболические тригонометрические функции

Гиперболический синус

Гиперболический косинус

Гиперболический тангенс

Гиперболический косеканс

Гиперболический секанс

Гиперболический котангенс

Обратный гиперболический синус

Обратный гиперболический косинус

Обратный гиперболический тангенс

Обратный гиперболический косеканс

Обратный гиперболический секанс

Обратный гиперболический котангенс

Меню

Формат

Уголок

Система координат

Режимы онлайн-калькулятора

Система координат

Десятичная дробь
Комплексные числа
Онлайн-конвертер единиц
Библиотека констант
Онлайн-решатель
Базовый преобразователь
Онлайн-калькулятор и математическая справка

eCalc — это бесплатный и простой в использовании научный калькулятор, который поддерживает множество расширенных функций, включая преобразование единиц измерения, решение уравнений и даже математику с комплексными числами.eCalc предлагается как бесплатный онлайн-калькулятор, так и как калькулятор для загрузки.

Режим ввода (алгебраический или RPN)

Онлайн-калькулятор работает либо с алгебраическим вводом (режим по умолчанию), либо с вводом RPN. Режим калькулятора устанавливается щелчком по символу «ALG / RPN» в строке состояния или путем изменения режима в диалоговом окне меню.

Алгебраический режим
Алгебраический режим ввода обычно называют «инфиксной записью» и широко используется в большинстве портативных калькуляторов.Выражения, вводимые в режиме алгебраического ввода, выполняются способом, который очень похож на естественную форму выражения, а порядок операций определяется приоритетом операторов и скобками.
Режим РПН
RPN, что означает обратную польскую нотацию, представляет собой нотацию на основе стека, в которой операторы следуют за своими операндами. Например, чтобы оценить выражение «1 + 2» в RPN, пользователь должен ввести «1 2 +», и выражение вычисляется сразу после оператора.Выражения, содержащие круглые скобки, такие как «(1 + 2) * 3», оцениваются с учетом порядка приоритета и ввода формы как «1 2 + 3 *».
Поддержка графических кнопок и клавиатуры

Онлайн-калькулятор поддерживает ввод данных с помощью графической кнопки или традиционных клавиш компьютерной клавиатуры. Пользователю предоставляется возможность использовать любой метод ввода, и оба они одинаково действительны; тем не менее, существуют некоторые тригонометрические функции (как указано ниже), которые ограничены вводом с клавиатуры компьютера, поскольку для размещения графических кнопок доступно ограниченное пространство.

Стек

Стек — это функция калькулятора, которая позволяет просматривать историю результатов. В стеке одновременно отображается только 4 элемента, но можно прокручивать вверх и вниз по стеку, щелкая стрелки вверх и вниз над стопкой. Значения в стеке также можно «вытолкнуть» вниз в поле ввода калькулятора, щелкнув стрелки вниз слева от строки в стеке.

Введение поддона

Калькулятор разделен на две части: интерфейс научного калькулятора слева и панель калькулятора справа.Поддон обеспечивает область отображения для специальных функций. Некоторые из этих функций включают в себя: преобразователь единиц, библиотеку констант, решатель уравнений, полиномиальный решатель, базовое преобразование и преобразование десятичных чисел в дробные.

Основные функции
Дополнение

Сложение (функция суммы) используется при нажатии кнопки «+» или с помощью клавиатуры. Функция дает a + b.

Вычитание

Вычитание (функция минус) используется при нажатии кнопки «-» или с помощью клавиатуры.Функция приводит к a-b.

Умножение

Умножение (функция умножения) используется нажатием кнопки «x» или клавишей «*» на клавиатуре. Функция возвращает a * b. -1 или делению 1 на число.Икс. Числа автоматически отображаются в формате, когда число слишком велико или слишком мало для отображения. Чтобы ввести число в этом формате, используйте кнопку экспоненты «EEX». Для этого введите мантиссу (не экспоненциальную часть), затем нажмите «EEX» или введите «e», а затем введите показатель степени.

Факториал

Факториальная функция используется при нажатии «!» кнопку или введите «!».

PI

PI — математическая константа отношения длины окружности к ее диаметру.

Тригонометрические функции онлайн
синус

Функция Sine (SIN) используется при нажатии кнопки «SIN» или типа «SIN ()». Результат — отношение длины противоположной стороны к длине гипотенузы прямоугольного треугольника.

Обратный синус

Для использования функции обратного синуса (ASIN или ARCSIN) нажмите кнопку «ASIN» или введите «ASIN ()». Результат действителен только от -pi / 2 до pi / 2.

Косинус

Функция косинуса (COS) используется при нажатии кнопки «COS» или при вводе «COS ()».В результате получается отношение длины соседней стороны к длине гипотенузы прямоугольного треугольника.

Обратный косинус

Функция обратного косинуса (ACOS или ARCCOS) используется нажатием кнопки «ACOS» или вводом «ACOS ()». Результат действителен только от 0 до пи.

Касательная

Функция тангенса (TAN) используется при нажатии кнопки «TAN» или при вводе «TAN ()». Результат — отношение длины противоположной стороны к длине смежной стороны прямоугольного треугольника.

Обратный тангенс

Функция обратной тангенсации (ATAN или ARCTAN) используется нажатием кнопки «ATAN» или вводом «ATAN ()». Результат действителен только от -pi / 2 до pi / 2.

Косеканс

Функция косеканса (CSC) используется при вводе «CSC ()». Косеканс — это мультипликативная обратная функция синусоиды.

Обратный косеканс

Функция обратного косеканса (ACSC) используется при вводе «ACSC ()». Результат действителен только от -pi / 2 до pi / 2, исключая 0.

Секант

Функция секанса (SEC) используется при вводе «SEC ()». Секанс — это мультипликативная величина, обратная функции косинуса.

Обратный секанс

Функция обратного секанса (ASEC) используется при вводе «ASEC ()». Результат действителен только от 0 до pi, исключая pi / 2.

Котангенс

Функция котангенса (COT) используется при вводе «COT ()». Котангенс — это мультипликативная обратная функция касательной.

Обратный котангенс

Функция обратного котангенса (ACOT) используется при вводе «ACOT ()». Результат действителен только от 0 до пи.

Онлайн-гиперболические тригонометрические функции
Гиперболический синус

Функция гиперболического синуса (SINH) используется при вводе «SINH ()».

Гиперболический косинус

Функция гиперболического косинуса (COSH) используется при вводе «COSH ()».

Гиперболический тангенс

Функция гиперболического тангенса (TANH) используется при вводе «TANH ()».

Гиперболический косеканс

Функция гиперболического косеканса (CSCH) используется при вводе «CSCH ()».

Гиперболический секанс

Функция гиперболического секанса (SECH) используется при вводе «SECH ()».

Гиперболический котангенс

Функция гиперболического котангенса (COTH) используется при вводе «COTH ()».

Обратный гиперболический синус

Функция обратного гиперболического синуса (ASINH) используется при вводе «ASINH ()».

Обратный гиперболический косинус

Функция обратного гиперболического косинуса (ACOSH) используется при вводе «ACOSH ()».

Обратный гиперболический тангенс

Функция обратного гиперболического тангенса (ATANH) Используется при вводе «ATANH ()».

Обратный гиперболический косеканс

Функция обратного гиперболического косеканса (ACSCH) используется путем ввода «ACSCH ()».

Обратный гиперболический секанс

Функция обратного гиперболического секанса (ASECH) используется путем ввода «ASECH ()».

Обратный гиперболический котангенс

Функция обратного гиперболического котангенса (ACOTH) используется при вводе «ACOTH ()».

Меню
Формат

Доступно 4 типа числовых форматов, и формат можно изменить, нажав кнопку «Меню». Доступные типы чисел: стандартные, фиксированные, научные и инженерные. В инженерии можно выбрать количество цифр для отображения в поле ввода в строке формата.Используемый числовой формат можно увидеть над стеком, это третий статус меню слева. Это место можно щелкнуть, чтобы изменить числовой формат.

Уголок

Доступно 3 типа представления углов, и эти типы углов можно изменить, нажав кнопку «Меню». Форматы углов: радианы, градусы и градиенты. Формат угла отображается над стеком и является первым статусом меню. На это место можно щелкнуть, чтобы изменить формат угла.

Система координат

Для представления комплексных чисел доступны две системы координат. Системы координат бывают прямоугольными и полярными. Систему координат можно выбрать, нажав кнопку «Меню». Выбранная система координат отображается над стеком и является вторым статусом меню. Чтобы ввести число в прямоугольном формате, его необходимо ввести в формате «(3,4)». Чтобы ввести число в полярном формате, его необходимо ввести в формате «(3 @ 75)».Вместо символа «@» можно использовать символ угла клавиатуры калькулятора.

Режимы онлайн-калькулятора

Есть два режима онлайн-калькулятора Алгебраический и RPN. Режим выбирается нажатием на кнопку «Меню». Режим калькулятора отображается в четвертом индикаторе состояния меню, при нажатии на это место режим изменяется. Нижняя зеленая кнопка «возврат» или «=» изменяется в зависимости от режима.

Десятичная дробь

Функция преобразования десятичной дроби в дробь этого калькулятора позволяет представить десятичное число в дробных оценках, а также в точном эквиваленте дроби.Функция преобразования десятичной дроби в дробь активируется нажатием кнопки «d> f» (десятичная дробь) на клавиатуре калькулятора. Откроется дисплей в боковом поддоне с полем ввода вверху. Десятичное значение можно ввести непосредственно в поле ввода, или, щелкнув стрелку ввода, будет введено значение из поля ввода калькулятора.

Комплексные числа

Онлайн-калькулятор полностью поддерживает комплексные числа. Комплексные числа являются расширением системы действительных чисел и включают второе число, которое является воображаемым, создавая плоскость комплексных чисел.Числовой формат для комплексных чисел — «a + bi», где a — действительное число, а b — мнимое число. Эти числа также могут быть представлены как величина и угол, когда система координат калькулятора находится в полярном режиме.

Онлайн-конвертер единиц

Онлайн-конвертер единиц отображается на поддоне, и его можно выбрать, нажав кнопку «Единицы». Конвертер единиц имеет 11 категорий: масса, скорость, время, мощность, объем, площадь, длина, энергия, температура, сила и давление.

Библиотека констант

Библиотека констант — это функция поддона, к которой можно получить доступ, щелкнув кнопку «CONST». Чтобы поместить константу в поле ввода калькулятора, просто нажмите на константу. Эта библиотека содержит множество популярных констант, которые используются регулярно. Библиотека констант включает в себя следующее: скорость света, кулоновская постоянная, ускорение гравитации, гравитационная постоянная, постоянная Планка, постоянная Больцмана, постоянная Фарадея, масса покоя электрона, масса покоя нейтрона, масса покоя протона, число Авогадро, заряд электронов, радиус Бора. , Молярная газовая постоянная, постоянная Ридберга, молярный объем, диэлектрическая проницаемость вакуума, постоянная Стефана-Больцмана, квант магнитного потока, проницаемость вакуума, магнетон Бора, постоянная Джозефсона, импеданс вакуума и квант проводимости.

Онлайн-решатель

В онлайн-калькуляторе есть два часто используемых решателя. Доступ к этим решателям можно получить, щелкнув по кнопке палитры «РЕШИТЬ». Доступные решатели: Линейный решатель и Корневой решатель.

Линейный решатель
Линейный решатель выбирается одним из 4 вариантов. Этот решатель позволяет решать для переменных, когда существует равное количество уравнений, уникальных для каждой неизвестной переменной.Решатель требует, чтобы были введены коэффициенты уравнений. При вводе номеров переменных убедитесь, что каждая запись в столбце используется для одной и той же переменной. Коэффициенты комплексных чисел могут быть введены после того, как все значения введены, щелкнув по кнопке «Решить». Результаты помечены как x1 … xn. X1 соответствует переменной, используемой в столбце 1 и x2, столбце 2 и так далее.
Решатель полиномов
Решатель полиномов (решатель корня) выбирается щелчком по соответствующему порядку уравнения.Коэффициенты вводятся в поля ввода ниже. Затем нажмите «Решить», и результаты станут корнями уравнения.
Базовый преобразователь

Базовый преобразователь — это функция, которая включена в поддон, и к ней можно получить доступ, нажав кнопку «BASE». Эта функция поддона обеспечивает одновременный просмотр различных эквивалентов числовой базы. Поддерживаются двоичные, восьмеричные, десятичные и шестнадцатеричные системы.Число можно ввести в любую базу счисления, а остальные изменятся автоматически. При нажатии на стрелку ввода рядом с полем ввода десятичных чисел будет вычислено десятичное число в поле ввода калькулятора. Двоичный дисплей можно изменить, щелкнув «1» или «0», и он будет переключать состояния.

Решение многоступенчатых линейных уравнений с дробями

Нам нужно более двух операций, чтобы решить линейное уравнение . Использовать обратные операции для отмены каждой операции в обратном порядке.

Если уравнение содержит дроби, умножьте обе части уравнения на наименьший общий знаменатель (ЖК-дисплей) для очистки дробей.

Шаги для решения многоступенчатого уравнения:

Шаг 1 Очистите уравнение дробей.

Шаг 2 Использовать Распределительное свойство чтобы убрать скобки с каждой стороны.

Шаг 3 Объединение похожих терминов с каждой стороны.

Шаг 4 Отменить сложение или вычитание.

Шаг 5 Отменить умножение или деление.

Пример:

Решать 2 у 3 + у 2 знак равно 7 .

Решение

Наименьший общий знаменатель (ЖКД) в этом случае — 6 .Итак, умножьте обе части уравнения на 6 .

6 ( 2 у 3 + у 2 ) знак равно 6 ( 7 )

Использовать распределительный закон в левой части уравнения.

6 ( 2 у 3 ) + 6 ( у 2 ) знак равно 6 ( 7 )

Умножить.

4 у + 3 у знак равно 42

Объедините похожие термины.

7 у знак равно 42

Отменить умножение. Разделите каждую сторону на 7 .

7 у 7 знак равно 42 7

Упрощать.

у знак равно 6

Калькулятор деления дробей целыми числами

Калькулятор результатов распечатки дробей целыми числами

Калькулятор дроби, деленной на целое число

Добро пожаловать в наш Калькулятор целых чисел , деленный на целых чисел .Здесь вы можете ввести дробь и целое число (целое). Мы покажем вам шаг за шагом, как разделить на дробь на целое число . Пожалуйста, введите свою математическую задачу ниже, чтобы мы могли показать вам решение с объяснением: