Содержание

Биометрия — Википедия

В Диснейуорлде биометрическим распознаванием отпечатков пальцев проверяют, что один билет используется каждый раз одним и тем же человеком

Биоме́три́я — система распознавания людей по одной или более физическим или поведенческим чертам (трёхмерная фотография лица и/или тела, образец голоса, отпечатки пальцев, рисунок вен руки, группа крови, специальное фото роговицы глаза и т.д.). В области информационных технологий биометрические данные используются в качестве формы управления идентификаторами доступа и контроля доступа. Также биометрический анализ используется для выявления людей, которые находятся под наблюдением (широко распространено в США, а также в России — отпечатки пальцев).

Биометрические данные можно разделить на два основных класса:

  • Физиологические — относятся к форме тела. В качестве примера можно привести: отпечатки пальцев, распознавание лица, ДНК, ладонь руки, сетчатка глаза, запах, голос.
  • Поведенческие — связаны с поведением человека. Например, походка и речь. Иногда для этого класса биометрии используется термин англ. behaviometrics.
Приблизительная структурная схема биометрического анализа (англ.)

Основные определения, используемые в сфере биометрических приборов[1]:

  • Универсальность — каждый человек должен обладать измеряемой характеристикой.
  • Уникальность — насколько хорошо человек отделяется от другого с биометрической точки зрения.
  • Постоянство — мера того, в какой степени выбранные биометрические черты остаются неизменными во времени (например, в процессе старения).
  • Взыскания — простота осуществления измерения.
  • Производительность — точность, скорость и надёжность используемых технологий.
  • Приемлемость — степень достоверности технологии.
  • Устранение — простота использования замены.

Биометрическая система может работать в двух режимах:

  • Верификация — сравнение один к одному с биометрическим шаблоном. Проверяет, что человек тот, за кого он себя выдает. Верификация может быть осуществлена по смарт-карте, имени пользователя или идентификационному номеру.
  • Идентификация — сравнение один ко многим: после «захвата» биометрических данных идет соединение с биометрической базой данных для определения личности. Идентификация личности проходит успешно, если биометрический образец уже есть в базе данных.

Первое частное и индивидуальное применение биометрической системы называлось регистрацией. В процессе регистрации биометрическая информация от индивида сохранялась. В дальнейшем биометрическая информация регистрировалась и сравнивалась с информацией, полученной ранее. Обратите внимание: если необходимо, чтобы биометрическая система была надежна, очень важно, чтобы хранение и поиск внутри самих систем были безопасными.

Первая часть (сенсор) — промежуточная связь между реальным миром и системой; он должен получить все необходимые данные. В большинстве случаев это изображения, но сенсор может работать и с другими данными в соответствии с желаемыми характеристиками.

Вторая часть (блок) осуществляет все необходимые предварительные процессы: она должна удалить все «лишнее» с сенсора (датчика) для увеличения чувствительности на входе (например, удаление фоновых шумов при распознавании голоса)

В третьей части (третьем блоке) извлекаются необходимые данные. Это важный шаг, так как корректные данные нуждаются в извлечении оптимальным путём. Вектор значений или изображение с особыми свойствами используется для создания шаблона. Шаблон — это синтез (совокупность) релевантных характеристик, извлечённых из источника. Элементы биометрического измерения, которые не используются в сравнительном алгоритме, не сохраняются в шаблоне, чтобы уменьшить размер файла и защитить личность регистрируемого, сделав невозможным воссоздание исходных данных по информации из шаблона.

Регистрация, представленная шаблоном, просто хранится в карте доступа или в базе данных биометрической системы, или в обоих местах сразу. Если при попытке входа в систему было получено совпадение, то полученный шаблон передается к сравнителю (какому-либо алгоритму сравнения), который сравнивает его с другими существующими шаблонами, оценивая разницу между ними с использованием определённого алгоритма (например, англ. Hamming distance — расстояние Хемминга — число позиций цифр в двух одинаковой длины кодовых посылках (отправленной и полученной), в которых соответствующие цифры отличаются). Сравнивающая программа анализирует шаблоны с поступающими, а затем эти данные передаются для любого специализированного использования (например, вход в охраняемую зону, запуск программы и т. д.).

Используемые показатели эффективности биометрических систем[2]:

  • Коэффициент ложного приема (FAR), или коэффициент ложного совпадения (FMR)
    FAR — коэффициент ложного пропуска, вероятность ложной идентификации, то есть вероятность того, что система биоидентификации по ошибке признает подлинность (например, по отпечатку пальца) пользователя, не зарегистрированного в системе
    FMR — вероятность, что система неверно сравнивает входной образец с несоответствующим шаблоном в базе данных.
  • Коэффициент ложного отклонения (FRR), или коэффициент ложного несовпадения (FNMR)
    FRR — коэффициент ложного отказа доступа — вероятность того, что система биоидентификации не признает подлинность отпечатка пальца зарегистрированного в ней пользователя.
    FNMR — вероятность того, что система ошибётся в определении совпадений между входным образцом и соответствующим шаблоном из базы данных. Система измеряет процент верных входных данных, которые были приняты неправильно.
  • Рабочая характеристика системы, или относительная рабочая характеристика (ROC)
    График ROC — это визуализация компромисса между характеристиками FAR и FRR. В общем случае сравнивающий алгоритм принимает решение на основании порога, который определяет, насколько близко должен быть входной образец к шаблону, чтобы считать это совпадением. Если порог был уменьшен, то будет меньше ложных несовпадений, но больше ложных приёмов. Соответственно, высокий порог уменьшит FAR, но увеличит FRR. Линейный график свидетельствует о различиях для высокой производительности (меньше ошибок — реже возникают ошибки).
  • Равный уровень ошибок (коэффициент EER), или коэффициент переходных ошибок (CER) — это коэффициенты, при которых обе ошибки (ошибка приёма и ошибка отклонения) эквивалентны. Значение EER может быть с лёгкостью получено из кривой ROC. EER — это быстрый способ сравнить точность приборов с различными кривыми ROC. В основном, устройства с низким EER наиболее точны. Чем меньше EER, тем более точной будет система.
  • Коэффициент отказа в регистрации (FTE или FER) — коэффициент, при котором попытки создать шаблон из входных данных безуспешны. Чаще всего это вызвано низким качеством входных данных.
  • Коэффициент ошибочного удержания (FTC) — в автоматизированных системах это вероятность того, что система не способна определить биометрические входные данные, когда они представлены корректно.
  • Ёмкость шаблона — максимальное количество наборов данных, которые могут храниться в системе.

Так как чувствительность биометрических приборов увеличивается, то FAR уменьшается, а FRR увеличивается.

Конфиденциальность и разграничение

Данные, полученные во время биометрической регистрации, могут использоваться с целями, на которые зарегистрированный индивид не давал согласия (не был осведомлён).

Опасность для владельцев защищённых данных

В случае, когда воры не могут получить доступ к охраняемой собственности, существует возможность выслеживания и покушения на носителя биометрических идентификаторов с целью получения доступа. Если что-либо защищено биометрическим устройством, владельцу может быть нанесен необратимый ущерб, который, возможно, будет стоить больше самой собственности. Например, в 2005 году малайзийские угонщики отрезали палец владельцу Мерседес-Бенц S-класса при попытке угнать его машину

[3].

Использование биометрических данных потенциально уязвимо к мошенничеству: биометрические данные так или иначе оцифровываются. Мошенник может подключиться к шине, ведущей от сканера к обрабатывающему устройству, и получить полную информацию о сканируемом объекте. Затем мошеннику даже не понадобится живой человек, потому что, точно так же подключившись к шине, он сможет проводить все операции от лица отсканированного человека, не задействуя сканер.

Биометрические данные с возможностью отмены

Преимуществом паролей над биометрией является возможность их смены. Если пароль был украден или потерян, его можно отменить и заменить новой версией. Это становится невозможным в случае с некоторыми вариантами биометрии. Если параметры чьего-либо лица были украдены из базы данных, то их невозможно отменить либо выдать новые. Биометрические данные с возможностью отмены являются тем самым путём, который должен включить в себя возможность отмены и замены биометрии. Первыми его предложили Ratha и др.[4]

Было разработано несколько методов отменяемой биометрии. Первая система биометрии с возможностью отмены, основанная на отпечатках пальцев, была спроектирована и создана Туляковым

[5]. Главным образом отменяемая биометрия представляет собой искажение биометрического изображения или свойств до их согласования. Вариативность искаженных параметров несёт в себе возможности отмены для данной схемы. Некоторые из предложенных техник работают, используя свои собственные механизмы распознавания, как в работах Тео[6] и Саввида[7] , в то время как другие (Дабба[8]) используют преимущества продвижения хорошо представленных биометрических исследований для своих интерфейсов распознавания. Хотя увеличиваются ограничения системы защиты, всё же это делает модели с возможностью отмены более доступными для биометрических технологий.

Одним из частных вариантов решения может быть, например, использование не всех биометрических параметров. Например, для идентификации используется рисунок папиллярных линий только двух пальцев (к примеру, больших пальцев правой и левой руки). В случае необходимости (например, при ожоге подушечек двух «ключевых» пальцев) данные в системе могут быть откорректированы так, что с определённого момента допустимым сочетанием будет указательный палец левой руки и мизинец правой (данные, которые до этого не были записаны в систему — и не могли быть скомпрометированы).

Международный обмен биометрическими данными[править | править код]

Многие страны, включая США, уже участвуют в обмене биометрическими данными. Данное заявление было сделано в 2009 году Кэтлин Крэнингер и Робертом Мокни в Комитете по Ассигнованиям, подкомитете по Национальной безопасности по «биометрической идентификации»[9]:

Чтобы быть уверенными в том, что мы можем пресечь деятельность террористических организаций до того, как они доберутся до США, мы должны занять ведущее место в продвижении международных стандартов по биометрии. Развивая совместимые системы, мы сможем безопасно передавать информацию о террористах между странами, поддерживая нашу защищенность. Так же, как мы улучшаем пути сотрудничества внутри Правительства США по выявлению и устранению террористов и иных опасных личностей, у нас ещё есть обязательства перед нашими партнерами за границей совместно предотвращать любые действия террористов. <...> Что же дальше? Нам нужно усиленно следовать за инновациями. Те, кто хотят причинить нам вред, продолжают искать наши слабости. Поэтому мы не можем позволить себе замедлить развитие. <...> Мы понимаем, что при помощи биометрии и международного сотрудничества мы можем изменить и расширить возможности для путешествий, а также защитить народы разных стран от тех, кто хочет причинить нам вред.

Согласно статье, опубликованной С. Магнусон в журнале «Национальная Безопасность» (англ. National Defense Magazine), Департамент национальной безопасности США под давлением вынуждает распространять биометрические данные[10]. В статье говорится:

Миллер (консультант Ведомства Национальной Безопасности и по делам безопасности в Америке) сообщает, что США имеет двусторонние договоренности по обмену биометрическими данными с 25 странами. Каждый раз, когда какой-либо иностранный лидер посещал Вашингтон за последние несколько лет, Государственный департамент обязательно заключал с ним подобный договор.

Законодательное регулирование в России[править | править код]

Статья 11 Федерального закона «О персональных данных» № 152-ФЗ от 27 июля 2006 г. регламентирует основные особенности использования биометрических данных. Также со вступлением в силу 482-ФЗ от 29 декабря 2017 года начат процесс постепенного перехода к биометрическим способам идентификации для оказания банковских, образовательных и иных услуг, а в будущем — и оплаты проезда. В июле 2019 года Комитет Госдумы России одобрил законопроект о биометрической идентификации клиентов банков

[11].

Технологии биометрии были освещены в популярных кинофильмах. Это вызвало интерес потребителей к биометрии как к средству идентификации человека. В фильмах 2003 года «Люди-Х 2» и «Халк» использовались биометрические технологии распознавания: в виде доступа по отпечатку руки в фильме «Люди-Х 2» и по отпечатку пальца в «Халке».

Но это не было так показательно, пока в 2004 году не вышел фильм «Я, робот» с Уиллом Смитом в главной роли. Футуристический фильм демонстрировал развитие новейших технологий, которые даже на сегодняшний день ещё недостаточно развиты. Использование технологий распознавания голоса и ладони в фильме зафиксировалось в представлении будущего у людей. Обе эти технологии, которые используются сегодня для охраны зданий или информации — лишь два из возможных применений биометрии.

В 2005 году вышел в прокат фильм «Остров». Дважды за фильм клоны используют биометрические данные: чтобы проникнуть в дом и завести машину.

Фильм «Гаттака» рисует общество, в котором существует два класса людей: продукты генной инженерии, созданные для того, чтобы быть высшими (так называемые «Действительные»), и низшие обычные люди («Инвалиды»). Люди, считавшиеся «Действительными», имели большие привилегии, и доступ к запретным зонам был ограничен для таких людей и контролировался автоматическими биометрическими сканерами, похожими на сканеры отпечатков пальцев, но коловшие палец и получавшие пробу ДНК из взятой крови.

В фильме «Разрушитель» персонаж Саймон Феникс, которого играл Уэсли Снайпс, вырезает жертве глаз, чтобы открыть дверь со сканером сетчатки.

В картине «Монстры против пришельцев» студии DreamWorks военный помощник проникает в зону, используя биометрию.

Религиозная критика[править | править код]

  1. ↑ Jain, A. K.; Ross, Arun & Prabhakar, Salil (January 2004), "An introduction to biometric recognition", IEEE Transactions on Circuits and Systems for Video Technology Т. 14th (1): 4—20, DOI 10.1109/TCSVT.2003.818349 
  2. ↑ "CHARACTERISTICS OF BIOMETRIC SYSTEMS" (неопр.). Cernet. Архивировано 4 мая 2012 года.
  3. ↑ BBC News: Malaysia car thieves steal finger Another report, giving more credence to the story: [1]
  4. ↑ N. K. Ratha, J. H. Connell, and R. M. Bolle, "Enhancing security and privacy in biometrics-based authentication systems, " IBM systems Journal, vol. 40, pp. 614—634, 2001.
  5. ↑ S. Tulyakov, F. Farooq, and V. Govindaraju, "Symmetric Hash Functions for Fingerprint Minutiae, " Proc. Int’l Workshop Pattern Recognition for Crime Prevention, Security, and Surveillance, pp. 30-38, 2005
  6. ↑ A. B. J. Teoh, A. Goh, and D. C. L. Ngo, "Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs, " Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 28, pp. 1892—1901, 2006.
  7. ↑ M. Savvides, B. V. K. V. Kumar, and P. K. Khosla, "«Corefaces»- Robust Shift Invariant PCA based Correlation Filter for Illumination Tolerant Face Recognition, " presented at IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04), 2004.
  8. ↑ M. A. Dabbah, W. L. Woo, and S. S. Dlay, "Secure Authentication for Face Recognition, " presented at Computational Intelligence in Image and Signal Processing, 2007. CIISP 2007. IEEE Symposium on, 2007.
  9. ↑ Kraniger, K & Mocny, R. A. (March 2009), "Testimony of Deputy Assistant Secretary for Policy Kathleen Kraninger, Screening Coordination, and Director Robert A. Mocny, US-VISIT, National Protection and Programs Directorate, before the House Appropriations Committee, Subcommittee on Homeland Security, "Biometric Identification"", <http://www.dhs.gov/ynews/testimony/testimony_1237563811984.shtm> 
  10. ↑ Magnuson, S (January 2009), "Defense department under pressure to share biometric data.", NationalDefenseMagazine.org, <http://www.nationaldefensemagazine.org/ARCHIVE/2009/JANUARY/Pages/DefenseDepartmentUnderPressuretoShareBiometricData.aspx>. Проверено 27 марта 2010.  Архивная копия от 12 марта 2010 на Wayback Machine
  11. ↑ Комитет Госдумы одобрил законопроект о биометрической идентификации клиентов банков (неопр.). ТАСС. Дата обращения 10 июля 2019.

Биометрические технологии — Википедия

Биометрические технологии основаны на биометрии, измерении уникальных характеристик отдельно взятого человека. Это могут быть как уникальные признаки, полученные им с рождения (ДНК, отпечатки пальцев, радужная оболочка глаза), так и характеристики, приобретённые со временем или же способные меняться с возрастом или внешним воздействием (почерк, голос или походка).

Обычно при классификации биометрических технологий выделяют две группы систем по типу используемых биометрических параметров:

  • Первая группа систем использует статические биометрические параметры: отпечатки пальцев, геометрия руки, сетчатка глаза и т. п.
  • Вторая группа систем использует для идентификации динамические параметры: динамика воспроизведения подписи или рукописного ключевого слова, голос и т. п.

Увеличившийся в последнее время интерес к данной тематике в мире принято связывать с угрозами активизировавшегося международного терроризма. Многие государства в ближайшей перспективе планируют ввести в обращение паспорта с биометрическими данными.

До 11 сентября 2001 года биометрические системы обеспечения безопасности использовались только для защиты военных секретов и самой важной коммерческой информации. После потрясшего весь мир террористического акта ситуация резко изменилась. Сначала биометрическими системами доступа были оборудованы аэропорты, крупные торговые центры и другие места скопления народа. Повышенный спрос спровоцировал исследования в этой области, что, в свою очередь, привело к появлению новых устройств и целых технологий. Увеличение рынка биометрических устройств привело к увеличению числа компаний, занимающихся ими, создавшаяся конкуренция послужила причиной к весьма значительному уменьшению цены на биометрические системы обеспечения информационной безопасности[1].

В рамках безвизовой программы США подписала с 27 странами соглашение, по которому граждане этих государств смогут въезжать на территорию США сроком до 90 дней без визы при обязательном наличии биометрических документов. Начало действия программы — 26 октября 2005. Среди государств, участвующих в программе — Австралия, Австрия, Бельгия, Великобритания, Германия, Италия, Лихтенштейн, Люксембург, Монако, Нидерланды, Португалия, Сингапур, Финляндия, Франция, Швейцария, Швеция и Япония.

В июне 2005 было заявлено, что к концу года в России будет утверждена форма нового заграничного паспорта. А в 2007 он будет введён в массовое обращение. Предположительно будет включать фотографию, сделанную методом лазерной гравировки и отпечатки двух пальцев.

Ambox outdated serious.svg

Информация в этом разделе устарела.

Вы можете помочь проекту, обновив его и убрав после этого данный шаблон.

Все биометрические системы работают практически по одинаковой схеме. Во-первых, система запоминает образец биометрической характеристики (это и называется процессом записи). Во время записи некоторые биометрические системы могут попросить сделать несколько образцов для того, чтобы составить наиболее точное изображение биометрической характеристики. Затем полученная информация обрабатывается и преобразовывается в математический код.

Кроме того, система может попросить произвести ещё некоторые действия для того, чтобы «приписать» биометрический образец к определённому человеку. Например, персональный идентификационный номер (PIN) прикрепляется к определённому образцу, либо смарт-карта, содержащая образец, вставляется в считывающее устройство. В таком случае снова делается образец биометрической характеристики и сравнивается с представленным образцом.

Идентификация по любой биометрической системе проходит четыре стадии[2]:

  • Запись — физический или поведенческий образец запоминается системой;
  • Выделение — уникальная информация выносится из образца и составляется биометрический образец;
  • Сравнение — сохранённый образец сравнивается с представленным;
  • Совпадение/несовпадение — система решает, совпадают ли биометрические образцы, и выносит решение.

Подавляющее большинство людей считают, что в памяти компьютера хранится образец отпечатка пальца, голоса человека или картинка радужной оболочки его глаза. Но на самом деле в большинстве современных систем это не так. В специальной базе данных хранится цифровой код длиной до 1000 бит, который ассоциируется с конкретным человеком, имеющим право доступа. Сканер или любое другое устройство, используемое в системе, считывает определённый биологический параметр человека. Далее он обрабатывает полученное изображение или звук, преобразовывая их в цифровой код. Именно этот ключ и сравнивается с содержимым специальной базы данных для идентификации личности[1].

Параметры биометрических систем[править | править код]

Вероятность возникновения ошибок FAR/FRR, то есть коэффициентов ложного пропуска (False Acceptance Rate — система предоставляет доступ незарегистрированному пользователю) и ложного отказа в доступе (False Rejection Rate — доступ запрещён зарегистрированному в системе человеку). Необходимо учитывать взаимосвязь этих показателей: искусственно снижая уровень «требовательности» системы (FAR), мы, как правило, уменьшаем процент ошибок FRR, и наоборот.

На сегодняшний день все биометрические технологии являются вероятностными, ни одна из них не способна гарантировать полное отсутствие ошибок FAR/FRR, и нередко данное обстоятельство служит основой для не слишком корректной критики биометрии[3].

Биометрические технологии активно применяются во многих областях, связанных с обеспечением безопасности доступа к информации и материальным объектам, а также в задачах уникальной идентификации личности.

Применения биометрических технологий разнообразны: доступ к рабочим местам и сетевым ресурсам, защита информации, обеспечение доступа к определённым ресурсам и безопасность. Ведение электронного бизнеса и электронных правительственных дел возможно только после соблюдения определённых процедур по идентификации личности. Биометрические технологии используются в области безопасности банковских обращений, инвестирования и других финансовых перемещений, а также розничной торговле, охране правопорядка, вопросах охраны здоровья, а также в сфере социальных услуг. Биометрические технологии в скором будущем будут играть главную роль в вопросах персональной идентификации во многих сферах. Применяемая отдельно или используемая совместно со смарт-картами, ключами и подписями, биометрия скоро станет применяться во всех сферах экономики и частной жизни[2].

Ключевые термины

В отличие от аутентификации пользователей по паролям или уникальным цифровым ключам, биометрические технологии всегда вероятностные, так как всегда сохраняется малый, иногда крайне малый шанс, что у двух людей могут совпасть сравниваемые биологические характеристики. В силу этого биометрия определяет целый ряд важных терминов:

  • FAR (False Acceptance Rate) — процентный порог, определяющий вероятность того, что один человек может быть принят за другого (коэффициент ложного доступа)(также именуется «ошибкой 2 рода»). Величина 1−FAR{\displaystyle 1-FAR} называется специфичность.
  • FRR (False Rejection Rate) — вероятность того, что человек может быть не распознан системой (коэффициент ложного отказа в доступе) (также именуется «ошибкой 1 рода»). Величина 1−FRR{\displaystyle 1-FRR} называется чувствительность.
  • Verification — сравнение двух биометрических шаблонов, один к одному. См. также: биометрический шаблон
  • Identification — идентификация биометрического шаблона человека по некой выборке других шаблонов. То есть идентификация — это всегда сравнение один ко многим.
  • Biometric template — биометрический шаблон. Набор данных, как правило, в закрытом, двоичном формате, подготавливаемый биометрической системой на основе анализируемой характеристики. Существует стандарт CBEFF на структурное обрамление биометрического шаблона, который также используется в BioAPI.

Отпечатки пальцев[править | править код]

Идентификация по отпечаткам пальцев — самая распространённая, надежная и эффективная биометрическая технология. Благодаря универсальности этой технологии она может применяться практически в любой сфере и для решения любой задачи, где необходима достоверная идентификация пользователей. В основе метода лежит уникальность рисунка папиллярных узоров на пальцах. Отпечаток, полученный с помощью специального сканера, датчика или сенсора, преобразуется в цифровой код и сравнивается с ранее введенным эталоном. Надёжность данного способа идентификации личности состоит в невозможности создания идентичного отпечатка.

Наиболее совершенную технологию идентификации по отпечаткам пальцев реализуют оптические сканеры.

Характеристики идентификаторов

Отпечатки всех пальцев каждого человека уникальны по рисунку папиллярных линий и различаются даже у близнецов. Отпечатки пальцев не меняются в течение всей жизни взрослого человека, они легко и просто предъявляются при идентификации.

Если один из пальцев поврежден, для идентификации можно воспользоваться «резервным» отпечатком (отпечатками), сведения о которых, как правило, также вносятся в биометрическую систему при регистрации пользователя.

Обработка идентификаторов

Для получения сведений об отпечатках пальцев применяются специализированные сканеры. Известны три основных типа сканеров отпечатков пальцев: ёмкостные, прокатные, оптические.

В настоящее время можно увидеть всё больше примеров, когда пальцы человека могут заменять ему банковскую карту. Так, например, в лондонском музыкальном баре ‘Proud’, тестируется новая технология FingoPay. Данная система биометрических платежей изобретена компанией Sthaler Limited. Устройство сканирует на пальце вены, расположение которых уникально у каждого человека. Эта идея уже завоевала себе поклонников среди клиентов заведения. Главный исполнительный директор компании заявил, что вскоре на подобный шаг решатся кинотеатры, супермаркеты и музыкальные фестивали. [4]

Радужная оболочка глаза[править | править код]

Технология распознавания радужной оболочки глаза была разработана для того, чтобы свести на нет навязчивость сканирования сетчатки глаза, при котором используются инфракрасные лучи или яркий свет. Учёные также провели ряд исследований, которые показали, что сетчатка глаза человека может меняться со временем, в то время как радужная оболочка глаза остается неизменной. И самое главное, что невозможно найти два абсолютно идентичных рисунка радужной оболочки глаза, даже у близнецов.

Для получения индивидуальной записи о радужной оболочке глаза черно-белая камера делает 30 записей в секунду. Еле различимый свет освещает радужную оболочку, и это позволяет видеокамере сфокусироваться на радужке. Одна из записей затем оцифровывается и сохраняется в базе данных зарегистрированных пользователей. Вся процедура занимает несколько секунд, и она может быть полностью компьютеризирована при помощи голосовых указаний и автофокусировки.

В аэропортах, например, имя пассажира и номер рейса сопоставляются с изображением радужной оболочки, никакие другие данные не требуются. Размер созданного файла, 512 байт с разрешением 640 х 480, позволяет сохранить большое количество таких файлов на жестком диске компьютера.

Очки и контактные линзы, даже цветные, никак не повлияют на процесс получения изображения. Также нужно отметить, что произведенные операции на глазах, удаление катаракты или вживление имплантатов роговицы не изменяют характеристики радужной оболочки, её невозможно изменить или модифицировать. Слепой человек также может быть идентифицирован при помощи радужной оболочки глаза. Пока у глаза есть радужная оболочка, её хозяина можно идентифицировать.

Камера может быть установлена на расстоянии от 10 см до 1 метра, в зависимости от сканирующего оборудования. Термин «сканирование» может быть обманчивым, так как в процессе получения изображения проходит не сканирование, а простое фотографирование.

Радужная оболочка по текстуре напоминает сеть с большим количеством окружающих кругов и рисунков, которые могут быть измерены компьютером. Программа сканирования радужной оболочки глаза использует около 260 точек привязки для создания образца. Для сравнения, лучшие системы идентификации по отпечаткам пальцев используют 60—70 точек.

Стоимость всегда была самым большим сдерживающим моментом перед внедрением технологии, но сейчас системы идентификации по радужной оболочке становятся более доступными для различных компаний. Сторонники технологии заявляют о том, что распознавание радужной оболочки глаза очень скоро станет общепринятой технологией идентификации в различных областях.

Методы

Ранее в биометрии имел применение рисунок кровеносных сосудов на сетчатке глаза. В последнее время этот метод распознавания не применяется, так как, кроме биометрического признака, несёт в себе информацию о здоровье человека.

Форма кисти руки[править | править код]

Проблема технологии: даже без учёта возможности ампутации, такое заболевание, как артрит, может сильно помешать применению сканеров.

Голос[править | править код]

Голосовая биометрия, позволяющая измерять голос каждого человека, незаменима при удаленном обслуживании клиентов, когда основным средством взаимодействия является голос, в первую очередь, в автоматических голосовых меню и контакт-центрах.

Проблемы, решаемые голосовой биометрией

Традиционные способы аутентификации клиента при удаленном обслуживании проверяют знания клиента (для этого клиента просят ввести какой-то пароль или ответить на вопросы безопасности — адрес, номер счета, девичью фамилию матери и пр.) Как показывают современные исследования в области безопасности, злоумышленники относительно легко могут добыть персональные данные практически любого человека и таким образом получить доступ, например, к его банковскому счету. Голосовая биометрия решает эту проблему, позволяя при удаленном телефонном обслуживании проверят действительно личность клиента, а не его знания. При использовании голосовой биометрии клиенту при звонке в IVR или в контакт-центр достаточно произнести парольную фразу или просто поговорить с оператором (рассказать о цели звонка) — голос звонящего будет автоматически проверен — действительно ли это голос принадлежит тому, за кого он себя выдает?

Преимущества голосовой биометрии

  • не требуется специальных сканеров — достаточно обычного микрофона в телефоне или диктофоне
  • не предъявляется специальных требований к устройствам — может быть использован любой диктофон (аналоговый или цифровой), мобильный или стационарный телефон (хоть 80-х годов выпуска)
  • просто — не требуется специальных умений

Типы голосовой биометрии

Различаются 2 типа голосовой аутентификации:

  1. Текстонезависимая — определение личности человека осуществляется по свободной речи, не требуется произнесения каких-то специальных слов и выражений. Например, человек может просто прочитать отрывок из стихотворения или обсудить с оператором контакт-центра цель своего звонка.
  2. Текстозависимая — для определения личности человек должен произнести строго определенную фразу. При этом данный тип голосовой биометрии делится на два:
    • Текстозависимая аутентификация по статической парольной фразе — для проверки личности необходимо произнести ту же фразу, которая произносилась и при регистрации голоса данного человека в системе.
    • Текстозависимая аутентификация по динамической парольной фразе — для проверки личности человека предлагается произнести фразу, состоящую из набора слов, произнесенных данным человеком при регистрации голоса в системе. Преимущество динамической парольной фразы от статической состоит в том, что каждый раз фраза меняется, что затрудняет мошенничество с использованием записи голоса человека (например, на диктофон).

Проблема технологии

Некоторые люди не могут произносить звуки, голос может меняться в связи с заболеванием и с возрастом. Кроме того, на точность аутентификации влияет шумовая обстановка вокруг человека (шумы, реверберация).

Почерк[править | править код]

Классическая верификация (идентификация) человека по почерку подразумевает сличение анализируемого изображения с оригиналом. Именно такую процедуру проделывает, например, оператор банка при оформлении документов. Очевидно, что точность такой процедуры, с точки зрения вероятности принятия неправильного решения (см. FAR & FRR) невысока. Кроме этого, на разброс значений вероятности принятия правильного решения оказывает и субъективный фактор.

Принципиально новые возможности верификации по почерку открываются при использовании автоматических методов анализа почерка и принятия решения. Данные методы позволяют исключить субъективный фактор и значительно снизить вероятность ошибок при принятии решения (FAR & FRR).

Одним из факторов, которые определяет преимущество автоматических методов идентификации путём анализа почерка по сравнению с классическими методами верификации, является возможность использования динамических характеристик почерка. Автоматические методы идентификации позволяют принимать решение не только путём сличения изображения верифицируемого и контрольного образца, но и путём анализа траектории и динамики начертания подписи или любого другого ключевого слова.

  • BioAPI
  • AAMVA
  • CBEFF
  • ANSI X9.84-2002
  • CDSA
  • CJIS-RS
  • HA-API
  • ISO/IEC JTC1/SC37
  • XCBF[1] (недоступная ссылка) (XML Common Biometric Format) — стандарт, разработанный техническим комитетом OASIS. XCBF, определяет набор криптографических сообщений, представленных в виде XML-тегов, которые могут быть использованы для безопасного сбора, обработки и хранения биометрической информации. Совместим со спецификациями BioAPI, и стандартами X9.84 и CBEFF.

AAMVA Fingerprint Minutiae Format/National Standard for the Driver License/Identification Card DL/ID-2000 — американский стандарт на формат представления, хранения и передачи отпечатков пальцев для водительских прав. Совместим со спецификациями BioAPI и стандартом CBEFF.

CDSA/HRS (Human Recognition Services) представляет собой биометрический модуль в архитектуре Common Data Security Architecture, разработанной Intel Architecture Labs и одобренного консорциумом Open Group. CDSA — определяет набор API, представляющих собой логически связанное множество функций, охватывающих такие компоненты защиты, как шифрование, цифровые сертификаты, различные способы аутентификации пользователей, в список которых с помощью HRS добавлена и биометрия. CDSA/HRS совместим со спецификациями BioAPI и стандартом CBEFF.

ANSI/NIST-ITL 1-2000 Fingerprint Standard Revision — американский стандарт, определяющий общий формат представления и передачи данных по отпечаткам пальцев, лицу, нательным шрамам и татуировкам для использования в правоохранительных органах США.

  • Биометрические системы аутентификации
  • Распознавание отпечатков пальцев
  • Технология биометрического обезличивания электронных историй болезней пациентов медицинских учреждении
  • Ахметов, Б. С., Досжанова, А. А., Картбаев, Т. С., Иванов, А. И., & Малыгин, А. Ю. Технология биометрического обезличивания электронных историй болезней пациентов медицинских учреждений.
  • Akhmetov, B. S., Ivanov, A. I., Kartbaev, T. S., Malygin, A. U., & Mukapil, K. Biometric Dynamic Personality Authentication in Open Information Space. International Journal of Computer Technology and Applications. India, 4(5), 846-855.

Проблемы и угрозы биометрической идентификации / Trend Micro corporate blog / Habr

В 2018 году в России вступил в действие закон о биометрической идентификации. В банках идёт внедрение биометрических комплексов и сбор данных для размещения в Единой биометрической системе (ЕБС). Биометрическая идентификация даёт гражданам возможность получать банковские услуги дистанционно. Это избавляет их от очередей и технически позволяет «посетить банк» в любое время суток.

Удобства дистанционной идентификации по фотографии или голосу по достоинству оценили не только клиенты банков, но и киберпреступники. Несмотря на стремление разработчиков сделать технологию безопасной, исследователи постоянно сообщают о появлении новых способов обмана таких систем.

Так может, не стоит соглашаться на предложение приветливого операциониста пройти биометрическую идентификацию в отделении банка? Или всё-таки воспользоваться преимуществами новой технологии? Разбираемся в этом посте.

В чём проблема?


У биометрической идентификации есть особенности, которые отличают её от привычной пары логин/пароль или «безопасной» 2FA:

  1. Биометрические данные публичны. Можно найти фотографии, видео- и аудиозаписи практически любого жителя планеты Земля и использовать их для идентификации.
  2. Невозможно заменить лицо, голос, отпечатки пальцев или сетчатку с той же лёгкостью, как пароль, номер телефона или токен для 2FA.
  3. Биометрическая идентификация подтверждает личность с вероятностью, близкой, но не равной 100%. Другими словами, система допускает, что человек может в какой-то степени отличаться от своей биометрической модели, сохранённой в базе.

Поскольку биометрические данные открывают не только турникеты в аэропортах, но и банковские сейфы, хакеры и киберпреступники всего мира усиленно работают над способами обмана систем биометрической идентификации. Каждый год в программе конференции по информационной безопасности BlackHat неизменно присутствуют доклады, связанные с уязвимостями биометрии, но практически не встречается выступлений, посвящённых разработке методов защиты.

В качестве основных проблем, связанных с биометрической идентификацией, можно выделить фальсификацию, утечки и кражи, низкое качество собранных данных, а также многократный сбор данных одного человека разными организациями.

Фальсификация


Публикации, связанные с различными способами обмана систем биометрической идентификации, часто встречаются в СМИ. Это и отпечаток пальца министра обороны Германии Урсулы фон дер Ляйен, изготовленный по её публичным фотографиям, и обман Face ID на iPhone X с помощью маски, нашумевшая кража 243 тысяч долларов с помощью подделанного нейросетью голоса генерального директора, фальшивые видео со звёздами, рекламирующими мошеннические выигрыши, и китайская программа ZAO, которая позволяет заменить лицо персонажа видеоролика на любое другое.

Чтобы биометрические системы не принимали фотографии и маски за людей, в них используется технология выявления «живости» — liveness detection — набор различных проверок, которые позволяют определить, что перед камерой находится живой человек, а не его маска или фотография. Но и эту технологию можно обмануть.


Внедрение фальшивого видеопотока в биометрическую систему. Источник

В представленном на BlackHat 2019 докладе «Biometric Authentication Under Threat: Liveness Detection Hacking» сообщается об успешном обходе liveness detection в Face ID с помощью очков, надетых на спящего человека, внедрения поддельных аудио- и видеопотоков, и других способов.


X-glasses — очки для обмана liveness detection в Face ID. Источник

Для удобства пользователей, Face ID срабатывает, если человек надел солнцезащитные очки. При этом количество света в глазах уменьшается, поэтому система не может построить качественную 3D-модель области вокруг глаз. По этой причине, обнаружив очки, Face ID не пытается извлечь 3D-информацию о глазах и представляет их в виде абстрактной модели — чёрной области с белой точкой в центре.

Качество сбора данных и ложные распознавания


Точность идентификации сильно зависит от качества биометрических данных, сохранённых в системе. Чтобы обеспечить достаточное для надёжного распознавания качество, необходимо оборудование, которое работает в условиях шумных и не слишком ярко освещённых отделений банков.

Дешёвые китайские микрофоны позволяют записать образец голоса в неблагоприятных условиях, а бюджетные камеры — сделать фото для построения биометрической модели. Но при таком сценарии значительно возрастает количество ложных узнаваний — вероятность того, что система примет одного человека за другого, с близким по тональности голосом или сходной внешностью. Таким образом, некачественные биометрические данные создают больше возможностей для обмана системы, которыми могут воспользоваться злоумышленники.

Многократный сбор биометрии


Некоторые банки начали внедрение собственной биометрической системы раньше, чем заработала ЕБС. Сдав свою биометрию, человек считает, что может воспользоваться новой технологией обслуживания в других банках, а когда выясняется, что это не так, сдаст данные повторно.

Ситуация с наличием нескольких параллельных биометрических систем создаёт риск, что:

  • У человека, дважды сдавшего биометрию, скорее всего, уже не вызовет удивления предложение повторить эту процедуру и в будущем он может стать жертвой мошенников, которые будут собирать биометрию в своих преступных целях.
  • Чаще будут происходить утечки и злоупотребления, поскольку увеличится количество возможных каналов доступа к данным.

Утечки и кражи


Может показаться, что утечка или кража биометрических данных — настоящая катастрофа для их владельцев, но, в действительности, всё не так плохо.

В общем случае биометрическая система хранит не фотографии и записи голоса, а наборы цифр, характеризующие личность — биометрическую модель. И теперь поговорим об этом подробнее.

Для построения модели лица система находит опорные антропометрические точки, определяющие его индивидуальные характеристики. Алгоритм вычисления этих точек отличается от системы к системе и является секретом разработчиков. Минимальное количество опорных точек — 68, но в некоторых системах их количество составляет 200 и более.

По найденным опорным точкам вычисляется дескриптор — уникальный набор характеристик лица, независимый от причёски, возраста и макияжа. Полученный дескриптор (массив чисел) и представляет собой биометрическую модель, которая сохраняется в базе данных. Восстановить исходное фото по модели невозможно.

Для идентификации пользователя система строит его биометрическую модель и сравнивает с хранящимся в базе дескриптором.


Из принципа построения модели имеются важные следствия:
  1. Использовать данные, похищенные из одной биометрической системы для обмана другой — вряд ли получится из-за разных алгоритмов поиска опорных точек и серьёзных различий в результирующей модели.
  2. Обмануть систему с помощью похищенных из неё данных тоже не получится — для идентификации требуется предъявление фотографии или аудиозаписи, по которой уже будет проведено построение модели и сравнение с эталоном.

Даже если база хранит не только биометрические модели, но и фото и аудио, по которым они построены, обмануть систему с их помощью «в лоб» нельзя: алгоритмы проверки на «живость» считают ложными результаты с полным совпадением дескрипторов.

Методы проверки liveness для лицевой и голосовой модальности.
Источник: Центр речевых технологий

Таким образом, использование утекших биометрических данных не поможет киберпреступникам быстро получить материальную выгоду, а значит, они с большей вероятностью будут искать более простые и надёжные способы обогащения.

Как защититься?


Вступившая в действие 14 сентября 2019 года директива Евросоюза PSD2, также известная как Open Banking, требует от банков внедрения многофакторной аутентификации для обеспечения безопасности удалённых транзакций, выполняемых по любому каналу. Это означает обязательное использование двух их трёх компонентов:

  • Знания — какой-то информации, известной только пользователю, например, пароля или контрольного вопроса.
  • Владения — какого-то устройства, которое имеется только у пользователя, например, телефона или токена.
  • Уникальности — чего-то неотъемлемого, присущего пользователю и однозначно идентифицирующего личность, например, биометрических данных.

Эти три элемента должны быть независимыми так, чтобы компрометация одного элемента не влияла на надёжность других.

Применительно к банковской практике это означает, что проведение операций по биометрическим данным должно обязательно сопровождаться дополнительными проверками с помощью пароля, токена или PUSH/SMS-кодов.

Использовать или нет?


У биометрической аутентификации имеются большие перспективы, однако опасности, которые приходят в нашу жизнь вместе с ними, выглядят весьма реалистично. Разработчикам систем и законодательным органам стоит изучить результаты новейших исследований уязвимостей биометрических систем и оперативно доработать как решения по идентификации, так и нормативные акты, регулирующие их работу.

Банкам необходимо принять во внимание ситуацию с deepfakes и другими способами обмана биометрических систем, используя сочетание традиционных способов идентификации пользователя с биометрическими: пароли, 2FA и usb-токены всё ещё могут принести пользу.
С клиентами банков ситуация сложная. С одной стороны, биометрическая идентификация разрабатывалась для их удобства как попытка расширить возможности для получения банковских услуг в любое время с минимальными формальностями. С другой — в случае успешной атаки рискуют своими деньгами именно они, а регуляторы и разработчики биометрических систем ответственности за взломы не несут.

В связи с этим, логичная рекомендация клиентам банков — не торопиться со сдачей биометрических данных, не обращать внимание на агрессивные призывы. Если же без биометрической идентификации никак не обойтись, то используйте её совместно с многофакторной аутентификацией, чтобы хотя бы частично снизить риски.

Биометрические системы аутентификации — Википедия

Биометрические системы аутентификации — системы аутентификации, использующие для удостоверения личности людей их биометрические данные.

Биометрическая аутентификация — процесс доказательства и проверки подлинности заявленного пользователем имени, через предъявление пользователем своего биометрического образа и путём преобразования этого образа в соответствии с заранее определённым протоколом аутентификации.

Не следует путать данные системы с системами биометрической идентификации, каковыми являются, к примеру системы распознавания лиц водителей[1] и биометрические средства учёта рабочего времени[2]. Биометрические системы аутентификации работают в активном, а не пассивном режиме и почти всегда подразумевают авторизацию. Хотя данные системы не идентичны системам авторизации, они часто используются совместно (например, в дверных замках с проверкой отпечатка пальца).

Различные системы контролируемого обеспечения доступа можно разделить на три группы в соответствии с тем, что человек собирается предъявлять системе:

  1. Парольная защита. Пользователь предъявляет секретные данные (например, PIN-код или пароль).
  2. Использование ключей. Пользователь предъявляет свой персональный идентификатор, являющийся физическим носителем секретного ключа. Обычно используются пластиковые карты с магнитной полосой и другие устройства.
  3. Биометрия. Пользователь предъявляет параметр, который является частью его самого. Биометрический класс отличается тем, что идентификации подвергаются биологические особенности человека — его индивидуальные характеристики (рисунок папиллярного узора[3], отпечатки пальцев, термограмму лица и т. д.).

Биометрические системы доступа являются очень удобными для пользователей. В отличие от паролей и носителей информации, которые могут быть потеряны, украдены, скопированы, Биометрические системы доступа основаны на человеческих параметрах, которые всегда находятся вместе с ними, и проблема их сохранности не возникает. Потерять их почти невозможно. Также невозможна передача идентификатора третьим лицам [источник не указан 2257 дней]. Впрочем, можно насильственно изъять параметры. В кинофильмах и анимации было неоднократно показано, что глаза и руки можно ампутировать (или использовать пользователя как заложника-токен). Можно так же изготовить копии, в том числе и скрытно считав параметры. Однако многие методы имеют защиту от использования мертвого органа или копии. Так, многие сканеры радужной оболочки имеют так же инфракрасный сканер, определяющие теплый ли глаз/макет или нет (можно обойти, нагрев глаз или использовать линзы с рисунком). Проводятся исследования возможности использования кратковременной вспышки и сканирования моторной реакции зрачка, однако метод имеет потенциальные проблемы при использовании офтальмологических препаратов и наркотическом опьянении[4]. Сканеры отпечатков пальцев могут комбинировать емкостное и ультразвуковое (защищает от копии распечатанной струйным принтером токопроводящими чернилами) сканирование (можно обмануть с помощью 3D принтера и токопроводящего материала). Надежнее всего здесь метод сканирования сетчатки глаза, изготовить макет очень сложно, после смерти же сосуды сетчатки перестают накачиваться кровью, и сканер способен это определить. Полностью насильственное использование заложника потенциально можно определить с помощью анализа поведения на видео, например, при помощи нейронных сетей.

Обзор биометрических методов аутентификации[править | править код]

В настоящее время широко используется большое количество методов биометрической аутентификации, которые делятся на два класса.

Критерии для биометрических параметров. Они обязаны соответствовать следующим пунктам[7]:

  1. Всеобщность: Данный признак должен присутствовать у всех людей без исключения.
  2. Уникальность: Биометрия отрицает существование двух людей с одинаковыми физическими и поведенческими параметрами.
  3. Постоянство: для корректной аутентификации необходимо постоянство во времени.
  4. Измеримость: специалисты должны иметь возможность измерить признак каким-либо устройством для дальнейшего занесения в базу данных.
  5. Приемлемость: общество не должно быть против сбора и измерения биометрического параметра.

Статические методы[править | править код]

Аутентификация по отпечатку пальца[править | править код]
Биометрический терминал учета рабочего времени PERCo CR11 с оптоволоконным сканером отпечатков пальцев.

Идентификация по отпечаткам пальцев — самая распространенная биометрическая технология аутентификации пользователей. Метод использует уникальность рисунка папиллярных узоров на пальцах людей. Отпечаток, полученный с помощью сканера, преобразовывается в цифровой код, а затем сравнивается с ранее введенными наборами эталонов. Преимущества использования аутентификации по отпечаткам пальцев — легкость в использовании, удобство и надежность. Универсальность этой технологии позволяет применять её в любых сферах и для решения любых и самых разнообразных задач, где необходима достоверная и достаточно точная идентификация пользователей.

Для получения сведений об отпечатках пальцев применяются специальные сканеры. Чтобы получить отчётливое электронное представление отпечатков пальцев, используют достаточно специфические методы, так как отпечаток пальца слишком мал, и очень трудно получить хорошо различимые папиллярные узоры.

Обычно применяются три основных типа сканеров отпечатков пальцев: ёмкостные, прокатные, оптические. Самые распространенные и широко используемые это оптические сканеры, но они имеют один серьёзный недостаток. Оптические сканеры неустойчивы к муляжам и мертвым пальцам, а это значит, что они не столь эффективны, как другие типы сканеров. Так же в некоторых источниках сканеры отпечатков пальцев делят на 3 класса по их физическим принципам: оптические, кремниевые, ультразвуковые[8][неавторитетный источник?][источник не указан 2257 дней].

Аутентификация по радужной оболочке глаза[править | править код]

Данная технология биометрической аутентификации личности использует уникальность признаков и особенностей радужной оболочки человеческого глаза. Радужная оболочка — тонкая подвижная диафрагма глаза у позвоночных с отверстием (зрачком) в центре; расположена за роговицей, между передней и задней камерами глаза, перед хрусталиком. Радужная оболочка образовывается ещё до рождения человека, и не меняется на протяжении всей жизни. Радужная оболочка по текстуре напоминает сеть с большим количеством окружающих кругов и рисунков, которые могут быть измерены компьютером, рисунок радужки очень сложен, это позволяет отобрать порядка 200 точек, с помощью которых обеспечивается высокая степень надежности аутентификации. Для сравнения, лучшие системы идентификации по отпечаткам пальцев используют 60-70 точек.

Технология распознавания радужной оболочки глаза была разработана для того, чтобы свести на нет навязчивость сканирования сетчатки глаза, при котором используются инфракрасные лучи или яркий свет. Ученые также провели ряд исследований, которые показали, что сетчатка глаза человека может меняться со временем, в то время как радужная оболочка глаза остается неизменной. И самое главное, что невозможно найти два абсолютно идентичных рисунка радужной оболочки глаза, даже у близнецов. Для получения индивидуальной записи о радужной оболочке глаза черно-белая камера делает 30 записей в секунду. Еле различимый свет освещает радужную оболочку, и это позволяет видеокамере сфокусироваться на радужке. Одна из записей затем оцифровывается и сохраняется в базе данных зарегистрированных пользователей. Вся процедура занимает несколько секунд, и она может быть полностью компьютеризирована при помощи голосовых указаний и автофокусировки. Камера может быть установлена на расстоянии от 10 см до 1 метра, в зависимости от сканирующего оборудования. Термин «сканирование» может быть обманчивым, так как в процессе получения изображения проходит не сканирование, а простое фотографирование. Затем полученное изображение радужки преобразуется в упрощенную форму, записывается и хранится для последующего сравнения. Очки и контактные линзы, даже цветные, не воздействуют на качество аутентификации[9].[неавторитетный источник?][источник не указан 2257 дней].

Стоимость всегда была самым большим сдерживающим моментом перед внедрением технологии, но сейчас системы идентификации по радужной оболочке становятся более доступными для различных компаний. Сторонники технологии заявляют о том, что распознавание радужной оболочки глаза очень скоро станет общепринятой технологией идентификации в различных областях.

Аутентификация по сетчатке глаза[править | править код]

Метод аутентификации по сетчатке глаза получил практическое применение примерно в середине 50-х годов прошлого века. Именно тогда была установлена уникальность рисунка кровеносных сосудов глазного дна (даже у близнецов данные рисунки не совпадают). Для сканирования сетчатки используется инфракрасное излучение низкой интенсивности, направленное через зрачок к кровеносным сосудам на задней стенке глаза. Из полученного сигнала выделяется несколько сотен особых точек, информация о которых сохраняется в шаблоне.

К недостаткам подобных систем следует в первую очередь отнести психологический фактор: не всякому человеку приятно смотреть в непонятное темное отверстие, где что-то светит в глаз. К тому же, подобные системы требуют чёткого изображения и, как правило, чувствительны к неправильной ориентации сетчатки. Поэтому требуется смотреть очень аккуратно, а наличие некоторых заболеваний (например, катаракты) может препятствовать использованию данного метода. Сканеры для сетчатки глаза получили большое распространение для доступа к сверхсекретным объектам, поскольку обеспечивают одну из самых низких вероятностей ошибки первого рода (отказ в доступе для зарегистрированного пользователя) и почти нулевой процент ошибок второго рода[10].

Аутентификация по геометрии руки[править | править код]

В этом биометрическом методе для аутентификации личности используется форма кисти руки. Из-за того, что отдельные параметры формы руки не являются уникальными, приходится использовать несколько характеристик. Сканируются такие параметры руки, как изгибы пальцев, их длина и толщина, ширина и толщина тыльной стороны руки, расстояние между суставами и структура кости. Также геометрия руки включает в себя мелкие детали (например, морщины на коже). Хотя структура суставов и костей являются относительно постоянными признаками, но распухание тканей или ушибы руки могут исказить исходную структуру. Проблема технологии: даже без учёта возможности ампутации, заболевание под названием «артрит» может сильно помешать применению сканеров.

С помощью сканера, который состоит из камеры и подсвечивающих диодов (при сканировании кисти руки, диоды включаются по очереди, это позволяет получить различные проекции руки), строится трёхмерный образ кисти руки. Надежность аутентификации по геометрии руки сравнима с аутентификацией по отпечатку пальца.

Системы аутентификации по геометрии руки широко распространены, что является доказательством их удобства для пользователей. Использование этого параметра привлекательно по ряду причин. Процедура получения образца достаточно проста и не предъявляет высоких требований к изображению. Размер полученного шаблона очень мал, несколько байт. На процесс аутентификации не влияют ни температура, ни влажность, ни загрязнённость. Подсчеты, производимые при сравнении с эталоном, очень просты и могут быть легко автоматизированы.

Системы аутентификации, основанные на геометрии руки, начали использоваться в мире в начале 70-х годов[11].[неавторитетный источник?][источник не указан 2257 дней]

Аутентификация по геометрии лица[править | править код]

Биометрическая аутентификация человека по геометрии лица довольно распространенный способ идентификации и аутентификации. Техническая реализация представляет собой сложную математическую задачу. Обширное использование мультимедийных технологий, с помощью которых можно увидеть достаточное количество видеокамер на вокзалах, аэропортах, площадях, улицах, дорогах и других местах скопления людей, стало решающим в развитии этого направления. Для построения трёхмерной модели человеческого лица, выделяют контуры глаз, бровей, губ, носа, и других различных элементов лица, затем вычисляют расстояние между ними, и с помощью него строят трёхмерную модель. Для определения уникального шаблона, соответствующего определённому человеку, требуется от 12 до 40 характерных элементов. Шаблон должен учитывать множество вариаций изображения на случаи поворота лица, наклона, изменения освещённости, изменения выражения. Диапазон таких вариантов варьируется в зависимости от целей применения данного способа (для идентификации, аутентификации, удаленного поиска на больших территориях и т. д.). Некоторые алгоритмы позволяют компенсировать наличие у человека очков, шляпы, усов и бороды[11].[неавторитетный источник?][источник не указан 2257 дней]

Аутентификация по термограмме лица[править | править код]

Способ основан на исследованиях, которые показали, что термограмма лица уникальна для каждого человека. Термограмма получается с помощью камер инфракрасного диапазона. В отличие от аутентификации по геометрии лица, данный метод различает близнецов. Использование специальных масок, проведение пластических операций, старение организма человека, температура тела, охлаждение кожи лица в морозную погоду не влияют на точность термограммы. Из-за невысокого качества аутентификации, метод на данный момент не имеет широкого распространения[12].

Динамические методы[править | править код]

Аутентификация по голосу[править | править код]

Биометрический метод аутентификации по голосу, характеризуется простотой в применении. Данному методу не требуется дорогостоящая аппаратура, достаточно микрофона и звуковой платы. В настоящее время данная технология быстро развивается, так как этот метод аутентификации широко используется в современных бизнес-центрах. Существует довольно много способов построения шаблона по голосу. Обычно, это разные комбинации частотных и статистических характеристик голоса. Могут рассматриваться такие параметры, как модуляция, интонация, высота тона, и т. п.

Основным и определяющим недостатком метода аутентификации по голосу — низкая точность метода. Например, человека с простудой система может не опознать. Важную проблему составляет многообразие проявлений голоса одного человека: голос способен изменяться в зависимости от состояния здоровья, возраста, настроения и т. д. Это многообразие представляет серьёзные трудности при выделении отличительных свойств голоса человека. Кроме того, учёт шумовой компоненты является ещё одной важной и не решенной проблемой в практическом использовании аутентификации по голосу. Так как вероятность ошибок второго рода при использовании данного метода велика (порядка одного процента), аутентификация по голосу применяется для управления доступом в помещениях среднего уровня безопасности, такие как компьютерные классы, лаборатории производственных компаний и т. д.[13]

Аутентификация по рукописному почерку[править | править код]

Метод биометрической аутентификации по рукописному почерку основывается на специфическом движении человеческой руки во время подписания документов. Для сохранения подписи используют специальные ручки или восприимчивые к давлению поверхности. Этот вид аутентификации человека использует его подпись. Шаблон создается в зависимости от необходимого уровня защиты. Обычно выделяют два способа обработки данных о подписи:

  • Анализ самой подписи, то есть используется просто степень совпадения двух картинок.
  • Анализ динамических характеристик написания, то есть для аутентификации строится свертка, в которую входит информация по подписи, временными и статистическими характеристиками её написания.

Комбинированная биометрическая система аутентификации[править | править код]

Комбинированная (мультимодальная) биометрическая система аутентификации применяет различные дополнения для использования нескольких типов биометрических характеристик, что позволяет соединить несколько типов биометрических технологий в системах аутентификации в одной. Это позволяет удовлетворить самые строгие требования к эффективности системы аутентификации. Например, аутентификация по отпечаткам пальцев может легко сочетаться со сканированием руки. Такая структура может использовать все виды биометрических данных человека и может применяться там, где приходится форсировать ограничения одной биометрической характеристики. Комбинированные системы являются более надежными с точки зрения возможности имитации биометрических данных человека, так как труднее подделать целый ряд характеристик, чем фальсифицировать один биометрический признак[14].[неавторитетный источник?][источник не указан 2257 дней]

  1. ↑ Российский биометрический портал
  2. ↑ Российский биометрический портал
  3. ↑ радужная оболочка глаза
  4. ↑ Biometrics Researcher Asks: Is That Eyeball Dead or Alive? (англ.), IEEE Spectrum: Technology, Engineering, and Science News. Дата обращения 17 апреля 2017.
  5. ↑ Биометрические системы безопасности. (неопр.) (недоступная ссылка). Дата обращения 21 ноября 2011. Архивировано 15 февраля 2012 года.
  6. Р. М. Болл, Дж. Х. Коннел, Ш. Панканти, Н. К. Ратха, Э. У. Сеньор. Руководство по биометрии. — М.: Техносфера, 2007. — С. 23. — 368 с. — ISBN 978-5-94836-109-3.
  7. Р. М. Болл, Дж. Х. Коннел, Ш. Панканти, Н. К. Ратха, Э. У. Сеньор. Руководство по биометрии. — М.: Техносфера, 2007. — С. 22. — 368 с. — ISBN 978-5-94836-109-3.
  8. ↑ Идентификация по отпечаткам пальцев. Часть 1. Виталий Задорожный (неопр.) (недоступная ссылка). Дата обращения 22 ноября 2011. Архивировано 16 сентября 2011 года.
  9. ↑ Компоненты биометрических систем
  10. ↑ [Шаров В. Биометрические методы компьютерной безопасности]
  11. 1 2 Попов М. Биометрические системы безопасности. (неопр.) (недоступная ссылка). Дата обращения 21 ноября 2011. Архивировано 15 февраля 2012 года.
  12. ↑ [Климакин С. П., Петруненков А. А., Черномордик О. М. Эра биометрики.]
  13. ↑ Шаров В. Биометрические методы компьютерной безопасности.
  14. ↑ биометрических систем. (недоступная ссылка)

что это и как она меняет мир финансов

«Усы, лапы и хвост — вот мои документы», — сказал Кот Матроскин почтальону Печкину и опередил время. Бумажные удостоверения уходят на второй план — их вытесняет биометрическая идентификация. Разблокировать смартфон отпечатком пальца, оплатить покупку с помощью селфи, перевести деньги голосом — это больше не фантастика. И то ли еще будет. Разбираемся, что такое биометрия и как она упрощает нашу жизнь.

Что такое биометрические данные?

Каждый человек имеет уникальные физические признаки. Некоторые из них получены от рождения — ДНК, отпечатки пальцев, геометрия руки, рисунок вен, радужная оболочка глаза. Другие приобретены со временем и могут меняться на протяжении жизни — походка, интонации голоса, подпись. Все эти характеристики не повторяются ни у кого из жителей нашей планеты, а значит, по ним можно идентифицировать личность.

На этом и построены биометрические технологии, которые помогают распознавать людей по одному или нескольким физическим и поведенческим признакам.

Сначала биометрию стала применять полиция разных стран. В начале XX века в Великобритании преступников начали опознавать по отпечаткам пальцев. С 1998 года в России ввели обязательную дактилоскопическую регистрацию для военных, полицейских, таможенников и налоговиков. В 2000-х годах США стали фотографировать и снимать отпечатки пальцев всех приезжающих иностранцев. Сегодня многие страны, в том числе и наша, выдают биометрические документы — заграничные и внутренние паспорта, визы, водительские удостоверения. А в аэропортах 12 европейских стран планируют установить «умные гейты» для биометрической идентификации в зонах паспортного контроля.

Как это работает?

С помощью специальных современных устройств — сканеров, сенсоров и других считывателей — биометрические данные человека записываются в специальную базу данных. Система запоминает эту информацию (например, отпечаток вашего пальца) и преобразует в цифровой код. Затем, когда вы снова прикладываете палец к сканеру, система сравнивает новый код с тем, что записала ранее. Если коды совпадут, то она выдаст ответ, что это действительно вы.

Какие виды биометрии бывают?

Изображение лица. Современные фото- и видеокамеры смартфонов легко «узнают» лица с помощью встроенного нейросетевого сканера. Изображение становится идентификатором человека. Технологию можно использовать и просто чтобы разблокировать телефон, и для более сложных задач — чтобы делать покупки, получать финансовые услуги.

Голос. Человеческие голоса имеют разную интонацию, высоту тона и модуляцию. Биометрическая система распознает людей по особенностям речи. Чтобы мошенники не могли воспользоваться уже готовыми записями чужого голоса, для идентификации пользователя чаще всего просят произнести случайный набор слов или фраз. По аналогии с фото или видео эту запись система сравнивает с той, что хранится в базе данных.

Отпечатки пальцев. Сегодня дактилоскопия применяется очень широко: отпечатки пальцев нужны для оформления паспорта и зарубежной визы, для доступа в мобильные приложения банков, для того чтобы разблокировать смартфон (теперь гаджеты знают вас как ваши пять пальцев). А в Саудовской Аравии с 2016 года нужно сдать отпечатки пальцев, чтобы купить сим-карту. Инновационные компании уже разрабатывают способ бесконтактно распознавать отпечатки.

Радужка глаза. Цветная оболочка глаза имеет более сложный рисунок, чем пальцы, поэтому этот способ биометрической идентификации еще надежнее. Миллионы смартфонов в мире оборудованы сканерами, которые, что называется, «на глаз» определяют хозяина.

Крупнейшая в мире система биометрической идентификации — Aadhaar. Ее создали в Индии, и на начало 2018 года в ней было зарегистрировано более 1,19 млрд человек — свыше 99% совершеннолетних граждан страны. В единую систему страны внесли отпечатки пальцев, радужные оболочки глаз, фотографии всех жителей, а также их персональные данные: дату рождения, ФИО, пол, адрес, номер телефона и e-mail. Каждому гражданину в этой системе присвоили 12-значный уникальный идентификационный номер и выдали ID-карту с этим номером. Именно эта карта считается удостоверением личности. Индийцы должны предъявить или ввести номер ID-карты и пройти биометрическую проверку, чтобы получить любые государственные, финансовые и другие услуги, которые требуют подтверждения личности. Например, пройти паспортный контроль в аэропорту, поучаствовать в выборах или сделать денежный перевод.

Как биометрию используют в сфере финансов?

Банки, платежные системы, торговые сети, кафе и другие сервисы активно внедряют биометрические технологии. С одной стороны, это помогает защитить клиентов от мошенников –преодолеть шифры двойной, а то и тройной биометрической идентификации гораздо сложнее, чем подобрать ПИН-код. С другой — это упрощает финансовые операции: покупки, денежные переводы и оплата услуг становятся легкими и быстрыми.

Кроме того, биометрия — это защита на случай экстренных ситуаций. В Японии после разрушительного землетрясения и цунами в марте 2011 года множество людей лишись не только своих банковских карт, но и документов. Они вынуждены были проходить через долгие и утомительные процедуры идентификации личности, чтобы снять деньги со своих счетов. После этого в стране создали единую биометрическую систему, которая исключает такую проблему в будущем.

Биометрические платежи

Прорывом стал запуск платежных сервисов Apple Pay, Samsung Pay и Android Рау, которые идентифицируют пользователей по отпечаткам пальцев с помощью смартфонов. В 2016 году в мобильном приложении китайской платежной системы Alipay заработала функция идентификации по изображению лица.

В Японии в преддверии Олимпийских игр 2020 года уже начали тестировать новую систему оплаты товаров и услуг для иностранцев. Она позволит им расплачиваться в гостиницах, магазинах и ресторанах, просто прикладывая палец к считывающему устройству. Снять отпечатки пальцев и привязать их к счету банковской карты гости смогут сразу по прибытии — в портах и аэропортах.

Финансисты вместе с технологическими компаниями разрабатывают и самые необычные биометрические решения. Например, один из зарубежных банков представил прототип браслета с функцией бесконтактных платежей, который идентифицирует пользователя по сердечному ритму.

Биометрию используют и в России. В некоторых кафе уже можно расплатиться, просто посмотрев в камеру на кассе. Чтобы система распознала человека, нужно заранее скачать специальное приложение, привязать к нему банковскую карту и загрузить свой портрет. Специальное программное обеспечение, установленное на камерах возле касс, распознает человека — и автоматически списывает деньги с его счета.

Денежные переводы

Некоторые зарубежные и российские банки используют технологию распознавания лиц для денежных переводов. Вы скачиваете на смартфон специальное приложение и выбираете «перевод по фото». Затем находите фото получателя в галерее. Изображение отправляется в банковскую систему распознавания лиц. Маскированный номер карты получателя выводится на экран. Вам остается только подтвердить отправку денег.

Кредиты и вклады онлайн

В России биометрическая идентификация в банках применяется уже очень широко. Крупные банки применяют голосовые технологии в колл-центрах, технологии распознавания лица при повторном обращении клиента в отделение банка для получения кредита, сканирование отпечатков пальцев для входа в мобильное приложение и для доступа к банковским ячейкам.

Механизм удаленной идентификации  в России позволяет открывать вклады, счета и получать многие другие услуги онлайн. Для этого клиенту нужно лишь один раз прийти в банк с документами и пройти первичную идентификацию — записать голос и видео. Банк отправляет эти данные в Единую биометрическую систему. Затем человек может дистанционно получать услуги любого банка, пройдя двойное подтверждение личности: через Единую государственную систему идентификации и аутентификации (Портал госуслуг) и через Единую биометрическую систему. Вся процедура займет несколько минут.

Безопасно ли использовать биометрические данные? Как они защищены от мошенников?

Биометрия — это гораздо более совершенная система защиты финансов, чем ПИН-коды и СМС от банка. Ваше лицо, голос и отпечатки пальцев мошенники украсть не могут. Сами биометрические системы тоже всегда серьезно защищены от взлома, кражи и подделки данных.

  • Информация хранится в закрытых системах, доступ к которым ограничен. Например, биометрические данные для удаленной идентификации защищены криптографией и хранятся обезличенно.

  • Сбор биометрических данных допускается только с согласия человека. Например, в визовом центре вас обязательно попросят подписать соответствующее заявление. То же самое касается и банковских услуг.

  • В финансовой сфере для надежности чаще всего применяют многофакторную аутентификацию — то есть по нескольким признакам. Например, ПИН-код или одноразовый пароль плюс биометрические данные. Злоумышленники не смогут подделать видеозапись клиента, потому что пользователя просят произнести уникальную комбинацию цифр. Для использования системы клиенту сначала нужно оставить в банке эталонную голосовую запись.

Покупки в кафе одним взглядом, переводы буквально одним пальцем, кредиты и вклады не вставая с дивана уже стали доступны, но еще не везде. Прежде чем биометрические технологии будут использоваться даже в самых маленьких магазинах во всех регионах, конечно, пройдет какое-то время. Как минимум для этого нужно провести интернет по всей стране.


Биометрия и биометрические данные: что это такое и безопасно ли это?

Автор Исхаков Максим На чтение 5 мин. Просмотров 147 Опубликовано

Биометрия и биометрические данные: что это такое и безопасно ли это?Биометрия и биометрические данные: что это такое и безопасно ли это?

Биометрические данные являются частью передовых технологий. Проще говоря, биометрия – это любые показатели, связанные с человеческими особенностями. Наиболее распространенными примерами биометрической системы распознавания являются отпечатки пальцев и технология распознавания лиц. Как новая технология, биометрические системы могут повысить удобство, заменяя пароли и помогая правоохранительным органам поймать преступников. Биометрические идентификаторы также выполняют функцию контроля доступа в безопасной среде, как физической, так и цифровой. Но первый вопрос, который вы должны задать: защищены ли мои биометрические данные от кражи?

Что такое биометрия и для чего используются биометрические данные?

Биометрия – это способ измерения физических характеристик человека для проверки его личности. Они могут включать физиологические признаки, такие как отпечатки пальцев и глаза, или поведенческие характеристики, которые оценивают уникальное поведение и подсознательные движения человека. Для того, чтобы биометрические данные были полезными, они должны быть уникальными, постоянными и собираемыми. После измерения, информация сравнивается и сопоставляется в базе данных.

Каждый раз, когда вы разблокируете экран смартфона с помощью функции распознавания лиц, запрашиваете у голосового помощника прогноз погоды или прикладываете отпечаток пальца на на какое-либо устройство, вы используете биометрические данные. Вы можете использовать эту технологию каждый день для идентификации личности или для взаимодействия с личным устройством, но существует множество других способов использования биометрических данных.

Например, полиция может собирать ДНК и отпечатки пальцев на месте преступления или использовать видеонаблюдение для анализа походки или голоса подозреваемого. В медицине применяется сканирование сетчатки глаза или проводятся генетические тесты. И даже ваша подпись относится к биометрическим данным.

Типы биометрических данных

  • Распознавание лиц. Измеряет уникальные рисунки лица человека путем сравнения и анализа контуров лица. Это используется в системах безопасности и в правоохранительных органах, а также в качестве способа аутентификации личности и разблокировки таких устройств, как смартфоны и ноутбуки.

  • Распознавание радужной оболочки глаз. Определяет уникальные рисунки радужной оболочки глаз человека. Эта технология широко используется в приложениях безопасности, но обычно не используется на потребительском рынке.

Распознавание радужной оболочки глазРаспознавание радужной оболочки глаз

  • Сканер отпечатков пальцев. Захватывает уникальный рисунок кожи на пальце. Многие смартфоны и ноутбуки используют эту технологию в качестве пароля для разблокировки экрана.

Сканер отпечатков пальцевСканер отпечатков пальцев

Распознавание голоса. Измеряет уникальные звуковые волны в голосе во время разговора с устройством. Ваш банк может использовать систему голосового управления для проверки вашей личности при звонках.

Распознавание голосаРаспознавание голоса

  • Геометрия руки. Измеряет и записывает длину, толщину, ширину и площадь поверхности руки человека. Эта технология относится к 1980-м годам и обычно использовалась в системах безопасности.

Геометрия рукиГеометрия руки

  • Поведенческие характеристики. Анализ того, как вы взаимодействуете с компьютеризированной системой. Нажатия клавиш, почерк, ходьба, использование мыши и другие движения могут оценить, кто вы.

Как работает биометрия?

Если вы когда-либо вставляли свой отпечаток пальца в устройство, то у вас возможно сложилось смутное представление о том, как работает биометрия. В основном, вы записываете свои биометрические данные в устройство, в данном случае отпечатки пальцев. Эта информация сохраняется, и к устройству можно будет получить доступ только после сравнения вашего отпечатка и сохраненного. Любой человек в мире может прикоснуться пальцем к сенсорному кругу вашего смартфона и вряд ли сможет разблокировать его.

Отпечатки пальцев – это всего лишь одна из форм биометрических данных. Одной из новых форм биометрической технологии является сканирование глаз. Обычно сканируют радужную оболочку. Почерк и голосовые отпечатки – это другие биометрические данные, которые являются исключительно вашими и иногда необходимы для обеспечения безопасности.

Биометрическая система состоит из трех различных компонентов:

  1. Сенсор. Это то, что записывает вашу информацию, а также считывает ее, когда ваша биометрическая информация должна быть распознана.
  2. Компьютер. Независимо от того, используете ли вы биометрическую информацию для доступа к компьютеру или к чему-либо еще, компьютер должен хранить эту информацию для сравнения.
  3. Программное обеспечение. ПО – это то, что соединяет компьютерное оборудование с сенсором (датчиком).

Биометрические данные широко распространены на смартфонах, таких как iPhone Apple и некоторых устройств Android. Ноутбуки и другие вычислительные устройства все больше полагаются на биометрические системы, и эта тенденция только начинается. Биометрическая аутентификация и идентификация являются безопасным способом входа на устройства и в различные службы. Кроме того, это может снять трудности с запоминанием десятков паролей учетных записей.

Конфиденциальны ли биометрические данные?

Когда речь заходит о биометрических данных, существует серьезная озабоченность по поводу конфиденциальности. Некоторые из основных проблем, выявленных с помощью биометрических данных, включают в себя следующие:

  • Любой сбор данных в конечном итоге может быть взломан. Некоторые данные могут быть особенно привлекательной мишенью для хакеров.
  • Биометрия может стать настолько обычным делом, что люди могут потерять бдительность. Многие перестанут использовать те меры безопасности, которые они используют сегодня, потому что будут думать, что биометрия решит все их проблемы безопасности.
  • Данные, хранящиеся в биометрической базе данных, могут быть более уязвимыми, чем любые другие виды данных. Вы можете изменить пароли, но не сможете изменить свой отпечаток пальца или радужную оболочку. Это означает, что после взлома биометрических данных они могут находиться под контролем других людей.
  • Некоторые фрагменты вашей физической личности могут быть продублированы. Например, преступник может сделать снимок вашего уха с высоким разрешением издалека или скопировать ваши отпечатки пальцев со стакана, который вы оставли в кафе. Эта информация может быть использована для взлома ваших устройств или учетных записей.

Как защитить биометрические данные?

Для защиты биометрических данных, вы можете принять ряд мер по обеспечению их безопасности на основе здравого смысла:

  • Надежный пароль. Это означает, что будет сложнее украсть ваши данные. Хранение биометрической информации в ограниченном количестве мест дает хакеру меньше возможностей для взлома.
  • Если вы беспокоитесь о безопасности ваших биометрических данных, то можете отказаться от их применения. На различных девайсах эту функцию можно отключить.

Биометрические данные могут сделать мир более безопасным и удобным. Соблюдение принципов здравого смысла в области безопасности может сыграть важную роль в защите вашей частной жизни.

На видео: Биометрические данные в России

Биометрические персональные данные: что к ним относится

Биометрические персональные данные — что к ним относится, где они используются, как собираются и хранятся? Такие вопросы возникают в связи с последними законодательными изменениями, позволившими использовать идентификационные особенности человека для различных целей. Из статьи вы узнаете, какие данные принято считать биометрическими, для чего они могут понадобиться, каковы правила их сбора, хранения и обработки.

Понятие биометрических данных. Какими законами регулируется обращение с такой информацией

Где могут быть использованы физические сведения о гражданине

Что относится к биометрическим материалам

По каким правилам собираются, обрабатываются и хранятся данные

Хранение и защита идентификационных сведений

Итоги

Понятие биометрических данных. Какими законами регулируется обращение с такой информацией

Биометрия — это уникальные физические или поведенческие характеристики, которые позволяют отличать людей друг от друга.

На законодательном уровне в России порядок обращения с биометрическими персональными данными определен:

  1. Законом «О персональных данных» от 27.07.2006 № 152-ФЗ.
  2. Законом «Об информации, информационных технологиях ...» от 27.07.2006 № 149-ФЗ.
  3. Постановлением Правительства РФ «Об определении состава сведений, размещаемых в единой информационной системе персональных данных...» от 30.06.2018 № 772.
  4. Приказом Минкомсвязи России «Об утверждении порядка обработки...» от 25.06.2018 № 321.

Президиумом Совета при Президенте РФ по стратегическому развитию и национальным проектам протоколом от 24.12.2018 № 16 был утвержден паспорт национальной программы «Цифровая экономика РФ», в соответствии с которым создается Единая биометрическая система. С 01.07.2018 сбор биофизических параметров своих клиентов начали крупные банковские учреждения, реализуя положения закона «О внесении изменений в отдельные законодательные акты РФ» от 31.12.2017 № 482-ФЗ. Таким образом, биометрические данные уже используются банками для идентификации клиентов по голосу и видео.

Где могут быть использованы физические сведения о гражданине

Биофизические информационные материалы могут понадобиться в различных сферах жизни, где требуется распознавание человека. Успешное применение биофизических особенностей граждан уже нашло себя в таких направлениях, как:

  • выдача биометрических загранпаспортов;
  • оформление виз в упрощенном порядке с применением биометрического распознавания;
  • дактилоскопическая регистрация иностранцев и граждан России;
  • идентификация в пропускных системах офисов и компьютерных системах, смартфонах и т. д.

Идентификация по биометрическим данным гораздо надежнее, чем визуальная. Например, сотрудник банка не сумеет отличить друг от друга близнецов, а биометрический анализ их голоса и изображения с большой долей вероятности сможет.

Что относится к биометрическим материалам

Отнесение информации к биофизическим данным требует соблюдения следующих условий:

  • сведения должны отображать информацию о субъекте;
  • применение указанной информации позволяет распознать человека.

К биофизическим индивидуальным свойствам относятся:

  • отпечатки пальцев и ладоней;
  • радужка оболочки глаз;
  • анализы ДНК;
  • образ лица;
  • особенности строения тела;
  • состояние психического здоровья;
  • рост;
  • вес.

Для распознавания гражданина необходима одна или больше поведенческих или физических особенностей. В постановлении № 722 к сведениям, подлежащим размещению в общей информационной системе индивидуальных данных, относятся:

  • фото- или видеоизображение лица гражданина;
  • данные голоса, полученные при помощи звукозаписывающих устройств.

По каким правилам собираются, обрабатываются и хранятся данные

Работа с индивидуальными сведениями граждан предполагает:

  • сбор;
  • хранение;
  • использование;
  • обновление;
  • защиту информации.

Эти процедуры регулирует приказ Минкомсвязи № 321.

Работа с персональными данными, в том числе биометрическими, осуществляется в следующем порядке:

  1. Уведомление оператором по сбору информации Роскомнадзора о том, что биометрические сведения будут собираться. Методические рекомендации по оповещению закреплены в приказе Роскомнадзора от 30.05.2017 № 94. Уведомление не требуется, если (п. 2 ст. 22 закона № 152-ФЗ):
  • сбор проводится в рамках трудового законодательства;
  • информация используется только для заключения сделки, стороной которой является субъект персональных сведений, и никуда не передается;
  • сведения ограничены Ф. И. О.;
  • в иных перечисленных в законе случаях.
  1. Получение письменного согласия субъекта персональной информации на сбор данных о нем. Без согласия информация может собираться в рамках (п. 2 ст. 11 закона № 152-ФЗ):
  • международных договоров о реадмиссии;
  • судопроизводства;
  • исполнения судебных решений;
  • обязательной дактилоскопической регистрации.
  1. Сбор сведений. Информацию должен получать уполномоченный сотрудник при личном присутствии человека. При этом создается биометрический шаблон, который подписывается электронной подписью и размещается в единой информационной системе.
  2. Хранение персональных биометрических шаблонов осуществляется не менее чем 50 лет со дня размещения в системе.

Хранение и защита идентификационных сведений

Защита биометрических персональных данных предполагает соблюдение оператором данных следующих правил (п.8 приказа № 321):

  • сбор сведений должны осуществлять уполномоченные сотрудники, обеспеченные ключами простой электронной подписи;
  • ключи электронных подписей хранятся таким образом, чтобы исключить несанкционированный доступ к ним и избежать незаконного изменения, добавления, удаления информации;
  • за передачу ключей электронной подписи третьим лицам либо необеспечение их конфиденциальности предусмотрена ответственность.

Конфиденциальность доступной информации должны хранить сотрудники, как собирающие биометрические данные, так и готовящие и выдающие ключи электронных подписей.

Дополнительно банковские учреждения должны (пп. 31, 33 Порядка, утв. приказом № 321):

  • информировать Банк России об обнаружении случаев нарушения правил защиты информационных материалов при работе с ними в срок не позже следующего рабочего дня с момента выявления такого факта;
  • ежегодно оценивать безопасность технической защиты информации, привлекая специализированные организации.

Итоги

Таким образом, работа с биометрическим материалом позволяет идентифицировать людей по их голосу, фото, видео и другим индивидуальным особенностям. Порядок работы с биометрическими данными строго регламентирован законодательством. Чтобы организация могла работать с персональными сведениями, она должна направить уведомление в Роскомнадзор в порядке, предусмотренном приказом Роскомнадзора от 30.05.2017 № 94.

Подписывайтесь на наш бухгалтерский канал Яндекс.Дзен

Подписаться



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *